Synthesis and characterization of crosslinked polyvinylalcohol/polyethyleneglycol blend membranes for CO2/CH4 separation

被引:77
|
作者
Xing, Rong [1 ]
Ho, W. S. Winston [1 ,2 ]
机构
[1] Ohio State Univ, Dept Chem & Biomol Engn, Columbus, OH 43210 USA
[2] Ohio State Univ, Dept Mat Sci & Engn, Columbus, OH 43210 USA
基金
美国国家科学基金会;
关键词
Mixed matrix membrane; Polyethyleneglycol; Crosslinked polymer blend; CO2/CH4; separation; Zeolite; 5A; MIXED MATRIX MEMBRANES; GAS PERMEATION PROPERTIES; POLYMERIC MEMBRANES; POLYIMIDE MEMBRANES; POLY(ETHYLENE OXIDE); PERMEABILITY; PLASTICIZATION; LINKING; CO2; PERVAPORATION;
D O I
10.1016/j.jtice.2009.05.004
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Both zeolite 5A filled and unfilled, crosslinked polyvinylalcohol (PVA)/polyethyleneglycol (PEG) blend membranes were synthesized and characterized for CO2/CH4 separation. The polar ether segments of PEG interact favorably with CO2, thus resulting in a high solubility selectivity, while PVA provides a mechanically strong polymer matrix. The crosslinking time, molecular weight of PEG and PEG (MW 200) content were found to significantly affect the gas transport property of resulting membranes, including gas permeability and CO2/CH4 selectivity. At 64 wt.% PEG (MW 200), the membranes showed good CO2 permeability of 80.2 Barters (1 Barrer = 10(-10) cm(3) (STP) cm/cm(2) s cmHg) and CO2CH4 selectivity of 33 at 30 degrees C. Effects of the zeolite 5A loading, temperature and feed pressure were investigated for the gas separation performance of both zeolite-filied and unfilled PVA/PEG membranes. It was found that CO2/CH4 selectivity decreased as the zeolite 5A content increased, while CO2 permeability first decreased and then drastically increased. Increasing temperature enhanced CO2 permeability but sacrificed their selectivity for both zeolite-filled and unfilled PVA/PEG membranes. As temperature decreased, the unfilled PVA/PEG membranes could perform beyond the Robeson's upper bound. Compared to the unfilled PVA/PEG membrane, the zeolite-filled PVA/PEG membrane showed improved performance as feed pressure increased. (C) 2009 Taiwan Institute of Chemical Engineers. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:654 / 662
页数:9
相关论文
共 50 条
  • [1] Synthesis and characterization of rubbery/glassy blend membranes for CO2/CH4 gas separation
    Mosleh, S.
    Mozdianfard, M. R.
    Hemmati, M.
    Khanbabaei, Gh.
    JOURNAL OF POLYMER RESEARCH, 2016, 23 (06)
  • [2] Polysulfone membranes containing ethylene glycol monomers: synthesis, characterization, and CO2/CH4 separation
    Luo Jujie
    He, Xiaoqi
    Si, Ziqin
    JOURNAL OF POLYMER RESEARCH, 2016, 24 (01)
  • [3] Synthesis and characterization of diethanolamine-impregnated cross-linked polyvinylalcohol/glutaraldehyde membranes for CO2/CH4 separation
    Pedram, Mona Zamani
    Omidkhah, Mohammadreza
    Amooghin, Abtin Ebadi
    JOURNAL OF INDUSTRIAL AND ENGINEERING CHEMISTRY, 2014, 20 (01) : 74 - 82
  • [4] Membranes for CO2 /CH4 and CO2/N2 Gas Separation
    Chawla, Muhammad
    Saulat, Hammad
    Khan, Muhammad Masood
    Khan, Muhammad Mahmood
    Rafiq, Sikander
    Cheng, Linjuan
    Iqbal, Tanveer
    Rasheed, M. Imran
    Farooq, Muhammad Zohaib
    Saeed, Muhammad
    Ahmad, Nasir M.
    Niazi, Muhammad Bilal Khan
    Saqib, Sidra
    Jamil, Farrukh
    Mukhtar, Ahmad
    Muhammad, Nawshad
    CHEMICAL ENGINEERING & TECHNOLOGY, 2020, 43 (02) : 184 - 199
  • [5] Synthesis and characterization of high permeable PEBA membranes for CO2/CH4 separation
    Karamouz, Farahnaz
    Maghsoudi, Hafez
    Yegani, Reza
    JOURNAL OF NATURAL GAS SCIENCE AND ENGINEERING, 2016, 35 : 980 - 985
  • [6] Fabrication and characterization of polyetherimide/polyvinyl acetate polymer blend membranes for CO2/CH4 separation
    Mannan, Hafiz Abdul
    Yih, Tan Ming
    Nasir, Rizwan
    Muhktar, Hilmi
    Mohshim, Dzeti Farhah
    POLYMER ENGINEERING AND SCIENCE, 2019, 59 : E293 - E301
  • [7] Preparation and characterization of mixed matrix membranes based on Matrimid/PVDF blend and MIL-101(Cr) as filler for CO2/CH4 separation
    Rajati, Hajar
    Navarchian, Amir H.
    Tangestaninejad, Shahram
    CHEMICAL ENGINEERING SCIENCE, 2018, 185 : 92 - 104
  • [8] Highly permeable and selective polymeric blend mixed matrix membranes for CO2/CH4 separation
    Farnam, Marjan
    bin Mukhtar, Hilmi
    bin Mohd Shariff, Azmi
    CHEMICAL PAPERS, 2021, 75 (11) : 5663 - 5685
  • [9] Current status and development of membranes for CO2/CH4 separation: A review
    Zhang, Yuan
    Sunarso, Jaka
    Liu, Shaomin
    Wang, Rong
    INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL, 2013, 12 : 84 - 107
  • [10] Gas Membranes for CO2/CH4 (Biogas) Separation: A Review
    Jeon, Yong-Woo
    Lee, Dong-Hoon
    ENVIRONMENTAL ENGINEERING SCIENCE, 2015, 32 (02) : 71 - 85