Laser powder bed fusion of nano-CaB6 decorated 2024 aluminum alloy

被引:87
作者
Mair, Philipp [1 ]
Goettgens, Valerie Sue [1 ]
Rainer, Tobias [1 ]
Weinberger, Nikolaus [2 ]
Letofsky-Papst, Ilse [3 ,4 ]
Mitsche, Stefan [3 ,4 ]
Leichtfried, Gerhard [1 ]
机构
[1] Univ Innsbruck, Fac Engn Sci, Dept Mechatron, Mat Sci, Tech Str 13, A-6020 Innsbruck, Austria
[2] Univ Innsbruck, Fac Engn Sci, Dept Struct Engn & Mat Sci, Mat Technol, Tech Str 13, A-6020 Innsbruck, Austria
[3] Graz Univ Technol, Inst Electron Microscopy & Nanoanal, NAWI Graz, Steyrergasse 17, A-8010 Graz, Austria
[4] Graz Univ Technol, Ctr Electron Microscopy, NAWI Graz, Steyrergasse 17, A-8010 Graz, Austria
关键词
Laser powder bed fusion; 2024; aluminum; Additive manufacturing; Selective laser melting; Alloy design; CaB6; MECHANICAL-PROPERTIES; METALLIC COMPONENTS; ALSI10MG ALLOY; MICROSTRUCTURE; PARTICLES; STRENGTH; FINE; REFINEMENT; ABSORPTION; LAB6;
D O I
10.1016/j.jallcom.2021.158714
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The 2024 aluminum alloy (Al-Cu-Mg) is widely used in aerospace; however, due to its solidification-cracking tendency, its processability using laser powder bed fusion (LPBF) remains a critical issue. The addition of 2 wt% CaB6 nanoparticles induces a columnar-to-equiaxed transition (CET), resulting in an immediate improvement in LPBF processability. High-density (> 99.5%) and crack-free specimens, with a homogeneous equiaxed microstructure and without preferred grain orientation, were obtained. The small average alpha-Al grain size of 0.91 +/- 0.32 mu m is attributed to the similar lattice constants of Al and CaB6 facilitating Al nucleation on CaB6 nanoparticles, resulting in a highly coherent Al/CaB6 interface. CaB6 nanoparticles act as heterogeneous nucleus and exert a pinning force on the grain boundaries, which reduces grain coarsening. The as-built specimens exhibit both high-yield strength (348 +/- 16 MPa) and high-tensile strength (391 +/- 22 MPa), combined with a high total elongation at break (12.6 +/- 0.6%). The macro hardness amounts to 132 +/- 4 HV5. (C) 2021 The Author(s). Published by Elsevier B.V. CC_BY_4.0
引用
收藏
页数:10
相关论文
共 51 条
[1]   Analysis of laser absorption on a rough metal surface [J].
Ang, LK ;
Lau, YY ;
Gilgenbach, RM ;
Spindler, HL .
APPLIED PHYSICS LETTERS, 1997, 70 (06) :696-698
[2]   DISLOCATION THEORY OF YIELDING AND STRAIN AGEING OF IRON [J].
COTTRELL, AH ;
BILBY, BA .
PROCEEDINGS OF THE PHYSICAL SOCIETY OF LONDON SECTION A, 1949, 62 (349) :49-62
[3]   Preparation of a novel Al-3B-5Sr master alloy and its modification and refinement performance on A356 alloy [J].
Cui, X. L. ;
Wu, Y. Y. ;
Gao, T. ;
Liu, X. F. .
JOURNAL OF ALLOYS AND COMPOUNDS, 2014, 615 :906-911
[4]   Additive manufacturing of metallic components - Process, structure and properties [J].
DebRoy, T. ;
Wei, H. L. ;
Zuback, J. S. ;
Mukherjee, T. ;
Elmer, J. W. ;
Milewski, J. O. ;
Beese, A. M. ;
Wilson-Heid, A. ;
De, A. ;
Zhang, W. .
PROGRESS IN MATERIALS SCIENCE, 2018, 92 :112-224
[5]   Microstructures and mechanical properties of in-situ CaB6 ceramic particles reinforced Al-Cu-Mn composite [J].
Ding, Jinhua ;
Cui, Chunxiang ;
Sun, Yijiao ;
Ding, Jing ;
Zhao, Lichen ;
Cui, Sen .
CERAMICS INTERNATIONAL, 2019, 45 (17) :21668-21675
[6]   Preparation of in-situ NdB6 nanoparticles and their reinforcement effect on Al-Cu-Mn alloy [J].
Ding, Jinhua ;
Cui, Chunxiang ;
Sun, Yijiao ;
Ding, Jing ;
Zhao, Lichen ;
Cui, Sen .
JOURNAL OF ALLOYS AND COMPOUNDS, 2019, 806 :393-400
[7]   A model for predicting the temperature field during selective laser melting [J].
Du, Yang ;
You, Xinyu ;
Qiao, Fengbin ;
Guo, Lijie ;
Liu, Zhengwu .
RESULTS IN PHYSICS, 2019, 12 :52-60
[8]   Grain refinement of aluminum alloys: Part I. The nucleant and salute paradigms - A review of the literature [J].
Easton, M ;
StJohn, D .
METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 1999, 30 (06) :1613-1623
[9]   Simultaneous enhancement of strength, ductility, and hardness of TiN/AlSi10Mg nanocomposites via selective laser melting [J].
Gao, C. ;
Wu, W. ;
Shi, J. ;
Xiao, Z. ;
Akbarzadeh, A. H. .
ADDITIVE MANUFACTURING, 2020, 34
[10]  
German R.M., 1984, Powder Metallurgy Science