Gate-based high fidelity spin readout in a CMOS device

被引:111
作者
Urdampilleta, Matias [1 ]
Niegemann, David J. [1 ]
Chanrion, Emmanuel [1 ]
Jadot, Baptiste [1 ]
Spence, Cameron [1 ]
Mortemousque, Pierre-Andre [1 ]
Bauerle, Christopher [1 ]
Hutin, Louis [2 ]
Bertrand, Benoit [2 ]
Barraud, Sylvain [2 ]
Maurand, Romain [3 ]
Sanquer, Marc [3 ]
Jehl, Xavier [3 ]
De Franceschi, Silvano [3 ]
Vinet, Maud [2 ]
Meunier, Tristan [1 ]
机构
[1] Univ Grenoble Alpes, Inst Neel, Grenoble INP, CNRS, Grenoble, France
[2] CEA, LETI, Minatec Campus, Grenoble, France
[3] Univ Grenoble Alpes, CEA, INAC Pheliqs, Grenoble, France
关键词
Classical control - Complementary metal oxide semiconductors - Complementary metal-oxide semiconductor devices - Electron exchange - Electron reservoir - Quantum error corrections - Radio frequencies - Silicon quantum dots;
D O I
10.1038/s41565-019-0443-9
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The engineering of a compact qubit unit cell that embeds all quantum functionalities is mandatory for large-scale integration. In addition, these functionalities should present the lowest error rate possible to successfully implement quantum error correction protocols(1). Electron spins in silicon quantum dots are particularly promising because of their high control fidelity(2-5) and their potential compatibility with complementary metal-oxide-semiconductor industrial platforms(6,7). However, an efficient and scalable spin readout scheme is still missing. Here we demonstrate a high fidelity and robust spin readout based on gate reflectometry in a complementary metal-oxide-semiconductor device that consists of a qubit dot and an ancillary dot coupled to an electron reservoir. This scalable method allows us to read out a spin in a single-shot manner with an average fidelity above 98% for a 0.5 ms integration time. To achieve such a fidelity, we combine radio-frequency gate reflectometry with a latched spin blockade mechanism that requires electron exchange between the ancillary dot and the reservoir. We show that the demonstrated high readout fidelity is fully preserved up to 0.5 K. This result holds particular relevance for the future cointegration of spin qubits and classical control electronics.
引用
收藏
页码:737 / +
页数:6
相关论文
共 34 条
[1]  
[Anonymous], 2018, PREPRINT
[2]  
[Anonymous], PHYS REV A
[3]   Rapid Single-Shot Measurement of a Singlet-Triplet Qubit [J].
Barthel, C. ;
Reilly, D. J. ;
Marcus, C. M. ;
Hanson, M. P. ;
Gossard, A. C. .
PHYSICAL REVIEW LETTERS, 2009, 103 (16)
[4]  
Batude P., 2017, 2017 IEEE INT ELECT, V311
[5]   THEORY OF COULOMB-BLOCKADE OSCILLATIONS IN THE CONDUCTANCE OF A QUANTUM DOT [J].
BEENAKKER, CWJ .
PHYSICAL REVIEW B, 1991, 44 (04) :1646-1656
[6]   Dispersive Readout of a Few-Electron Double Quantum Dot with Fast rf Gate Sensors [J].
Colless, J. I. ;
Mahoney, A. C. ;
Hornibrook, J. M. ;
Doherty, A. C. ;
Lu, H. ;
Gossard, A. C. ;
Reilly, D. J. .
PHYSICAL REVIEW LETTERS, 2013, 110 (04)
[7]  
Elzerman JM, 2004, NATURE, V430, P431, DOI [10.1038/nature02693, 10.1039/nature02693]
[8]   A linear triple quantum dot system in isolated configuration [J].
Flentje, Hanno ;
Bertrand, Benoit ;
Mortemousque, Pierre-Andre ;
Thiney, Vivien ;
Ludwig, Arne ;
Wieck, Andreas D. ;
Bauerle, Christopher ;
Meunier, Tristan .
APPLIED PHYSICS LETTERS, 2017, 110 (23)
[9]   Integrated silicon qubit platform with single-spin addressability, exchange control and single-shot singlet-triplet readout [J].
Fogarty, M. A. ;
Chan, K. W. ;
Hensen, B. ;
Huang, W. ;
Tanttu, T. ;
Yang, C. H. ;
Laucht, A. ;
Veldhorst, M. ;
Hudson, F. E. ;
Itoh, K. M. ;
Culcer, D. ;
Ladd, T. D. ;
Morello, A. ;
Dzurak, A. S. .
NATURE COMMUNICATIONS, 2018, 9
[10]   Two-dimensional color-code quantum computation [J].
Fowler, Austin G. .
PHYSICAL REVIEW A, 2011, 83 (04)