Study of Cooling Rate on the Growth of Graphene via Chemical Vapor Deposition

被引:27
作者
Seo, Jihyung [1 ]
Lee, Junghyun [1 ]
Jang, A-Rang [2 ]
Choi, Yunseong [1 ]
Kim, Ungsoo [1 ]
Shin, Hyeon Suk [2 ]
Park, Hyesung [1 ]
机构
[1] UNIST, Low Dimens Carbon Mat Ctr, Sch Energy & Chem Engn, Dept Energy Engn, Ulsan 44919, South Korea
[2] UNIST, Ctr Multidimens Carbon Mat, Low Dimens Carbon Mat Ctr, Dept Chem,Dept Energy Engn,Sch Nat Sci, Ulsan 44919, South Korea
基金
新加坡国家研究基金会;
关键词
FEW-LAYER GRAPHENE; LARGE-AREA; HIGH-QUALITY; ORGANIC PHOTOVOLTAICS; COPPER FOILS; HYDROGEN; FILMS; CVD; ELECTRODES; MONOLAYER;
D O I
10.1021/acs.chemmater.6b04432
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The chemical vapor deposition (CVD) technique has become one of the most widely used methods in the synthesis/study of graphene owing to its capability in large-area and uniform synthesis with great potential in mass production. It is also well-known that single-layer graphene can be grown on copper-based catalytic substrates due to its low carbon solubility. However, few layer graphene patches are typically generated at grain boundaries or defect sites in the metal substrate, which lowers the overall qualities of graphene film. Various factors, often closely correlated, influence the CVD process, and thus the properties of graphene. In this work, we provide detailed analysis on the cooling rate in the CVD process and its effect on the general properties of graphene. Various configurations of cooling conditions, controlled by the speed of cooling rate, were examined. Its effects on several physical properties were investigated, and it is found that the cooling rate plays an important role in producing high-quality single-layer graphene. On the basis of our observations, synthesis of high quality, continuous, single-layer graphene with negligible few-layer patches can be successfully accomplished, which can promote the widespread industrial applications of CVD graphene.
引用
收藏
页码:4202 / 4208
页数:7
相关论文
共 42 条
[1]  
Bae S, 2010, NAT NANOTECHNOL, V5, P574, DOI [10.1038/NNANO.2010.132, 10.1038/nnano.2010.132]
[2]   Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics [J].
Berger, C ;
Song, ZM ;
Li, TB ;
Li, XB ;
Ogbazghi, AY ;
Feng, R ;
Dai, ZT ;
Marchenkov, AN ;
Conrad, EH ;
First, PN ;
de Heer, WA .
JOURNAL OF PHYSICAL CHEMISTRY B, 2004, 108 (52) :19912-19916
[3]   Synthesis of graphene [J].
Bhuyan M.S.A. ;
Uddin M.N. ;
Islam M.M. ;
Bipasha F.A. ;
Hossain S.S. .
International Nano Letters, 2016, 6 (2) :65-83
[4]   The electronic properties of graphene [J].
Castro Neto, A. H. ;
Guinea, F. ;
Peres, N. M. R. ;
Novoselov, K. S. ;
Geim, A. K. .
REVIEWS OF MODERN PHYSICS, 2009, 81 (01) :109-162
[5]   Synthesis of Large-Area Graphene Layers on Poly-Nickel Substrate by Chemical Vapor Deposition: Wrinkle Formation [J].
Chae, Seung Jin ;
Guenes, Fethullah ;
Kim, Ki Kang ;
Kim, Eun Sung ;
Han, Gang Hee ;
Kim, Soo Min ;
Shin, Hyeon-Jin ;
Yoon, Seon-Mi ;
Choi, Jae-Young ;
Park, Min Ho ;
Yang, Cheol Woong ;
Pribat, Didier ;
Lee, Young Hee .
ADVANCED MATERIALS, 2009, 21 (22) :2328-+
[6]   Diffusive charge transport in graphene on SiO2 [J].
Chen, J. -H. ;
Jang, C. ;
Ishigami, M. ;
Xiao, S. ;
Cullen, W. G. ;
Williams, E. D. ;
Fuhrer, M. S. .
SOLID STATE COMMUNICATIONS, 2009, 149 (27-28) :1080-1086
[7]   Effect of Cooling Condition on Chemical Vapor Deposition Synthesis of Graphene on Copper Catalyst [J].
Choi, Dong Soo ;
Kim, Keun Soo ;
Kim, Hyeongkeun ;
Kim, Yena ;
Kim, TaeYoung ;
Rhy, Se-hyun ;
Yang, Cheol-Min ;
Yoon, Dae Ho ;
Yang, Woo Seok .
ACS APPLIED MATERIALS & INTERFACES, 2014, 6 (22) :19574-19578
[8]   Synthesis of Graphene and Its Applications: A Review [J].
Choi, Wonbong ;
Lahiri, Indranil ;
Seelaboyina, Raghunandan ;
Kang, Yong Soo .
CRITICAL REVIEWS IN SOLID STATE AND MATERIALS SCIENCES, 2010, 35 (01) :52-71
[9]   Synthesis, Transfer, and Devices of Single- and Few-Layer Graphene by Chemical Vapor Deposition [J].
De Arco, Lewis Gomez ;
Zhang, Yi ;
Kumar, Akshay ;
Zhou, Chongwu .
IEEE TRANSACTIONS ON NANOTECHNOLOGY, 2009, 8 (02) :135-138
[10]   Raman spectrum of graphene and graphene layers [J].
Ferrari, A. C. ;
Meyer, J. C. ;
Scardaci, V. ;
Casiraghi, C. ;
Lazzeri, M. ;
Mauri, F. ;
Piscanec, S. ;
Jiang, D. ;
Novoselov, K. S. ;
Roth, S. ;
Geim, A. K. .
PHYSICAL REVIEW LETTERS, 2006, 97 (18)