A fixed point approach to the stability of an AQCQ-functional equation in RN-spaces

被引:0
作者
Park, Choonkil [1 ]
Shin, Dong Yun [2 ]
Lee, Sungjin [3 ]
机构
[1] Hanyang Univ, Res Inst Nat Sci, Seoul 133791, South Korea
[2] Univ Seoul, Dept Math, Seoul 130743, South Korea
[3] Daejin Univ, Dept Math, Kyeonggi 487711, South Korea
来源
JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS | 2016年 / 9卷 / 04期
关键词
Random normed space; fixed point; Hyers-Ulam stability; additive-quadratic-cubic-quartic functional equation; ULAM-RASSIAS STABILITY; FUZZY STABILITY;
D O I
10.22436/jnsa.009.04.34
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Using the fixed point method, we prove the Hyers-Ulam stability of the following additive-quadratic-cubic-quartic functional equation f (x + 2y) + f (x - 2y) = 4f (x + y) + 4f (x - y) - 6f (x) + f (2y) + f (-2y) - 4f (y) - 4f (-y) in random normed spaces. (C) 2016 All rights reserved.
引用
收藏
页码:1787 / 1806
页数:20
相关论文
共 52 条
  • [1] Aczel J., 1989, ENCY MATH APPL, V31
  • [2] adariu L. C, GRAZER MATH BER
  • [3] [Anonymous], CHAOS SOLIT IN PRESS
  • [4] [Anonymous], J INEQUAL PURE APPL
  • [5] [Anonymous], 2011, Probabilistic Metric Spaces
  • [6] [Anonymous], 1984, AEQUATIONES MATH
  • [7] [Anonymous], J INEQUAL APPL
  • [8] [Anonymous], 1998, Stability of Functional Equations in Several Variables
  • [9] [Anonymous], 2002, FUNCTIONAL EQUATIONS
  • [10] Aoki T., 1950, J MATH SOC JAPAN, V2, P64, DOI [10.2969/jmsj/00210064, DOI 10.2969/JMSJ/00210064]