Existence, Nonexistence and Multiplicity of Positive Solutions for Singular Boundary Value Problems Involving φ-Laplacian

被引:2
作者
Kim, Chan-Gyun [1 ]
机构
[1] Pusan Natl Univ, Dept Math Educ, Busan 609735, South Korea
基金
新加坡国家研究基金会;
关键词
three positive solutions; phi-Laplacian; singular problem; SEMILINEAR DIFFERENTIAL-EQUATIONS;
D O I
10.3390/math7100953
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we establish the results on the existence, nonexistence and multiplicity of positive solutions to singular boundary value problems involving phi-Laplacian. Our approach is based on the fixed point index theory. The interesting point is that a result for the existence of three positive solutions is given.
引用
收藏
页数:12
相关论文
共 29 条
[1]   Eigenvalues and the one-dimensional p-Laplacian [J].
Agarwal, RP ;
Lü, HS ;
O'Regan, D .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2002, 266 (02) :383-400
[2]   Three positive solutions for a generalized Laplacian boundary value problem with a parameter [J].
Bai, Dingyong ;
Chen, Yuming .
APPLIED MATHEMATICS AND COMPUTATION, 2013, 219 (09) :4782-4788
[3]   NONLINEAR ELLIPTIC PROBLEMS IN ANNULAR DOMAINS [J].
BANDLE, C ;
COFFMAN, CV ;
MARCUS, M .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1987, 69 (03) :322-345
[4]  
Deimling K, 2010, Nonlinear Functional Analysis
[5]   A HOMOTOPIC DEFORMATION ALONG P OF A LERAY-SCHAUDER DEGREE RESULT AND EXISTENCE FOR (/U'/P-2U')'+F(T,U)=O, U(O)=U(T)=O, P-GREATER-THAN-1 [J].
DELPINO, M ;
ELGUETA, M ;
MANASEVICH, R .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1989, 80 (01) :1-13
[6]  
García-Huidobro M, 2009, ADV DIFFERENTIAL EQU, V14, P401
[7]  
Graef J. R., 2002, COMM APPL ANAL, V6, P273
[8]  
Guo Dajun., 1988, NONLINEAR PROBLEMS A, V5
[9]   Positive solutions for nonlinear eigenvalue problems [J].
Henderson, J ;
Wang, HY .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1997, 208 (01) :252-259
[10]   Positive solutions for an elliptic equation in an annulus with a superlinear nonlinearity with zeros [J].
Iturriaga, Leonelo ;
Massa, Eugenio ;
Sanchez, Justino ;
Ubilla, Pedro .
MATHEMATISCHE NACHRICHTEN, 2014, 287 (10) :1131-1141