Noise-induced transitions in optomechanical synchronization

被引:79
|
作者
Weiss, Talitha [1 ]
Kronwald, Andreas [1 ]
Marquardt, Florian [1 ,2 ]
机构
[1] Univ Erlangen Nurnberg, Dept Phys, Staudtstr 7, D-91058 Erlangen, Germany
[2] Max Planck Inst Sci Light, Gunther Scharowsky Str 1 Bau 24, D-91058 Erlangen, Germany
来源
NEW JOURNAL OF PHYSICS | 2016年 / 18卷
关键词
optomechanics; nanomechanics; synchronization; QUANTUM-THEORY; OSCILLATOR; DYNAMICS; PHOTONS;
D O I
10.1088/1367-2630/18/1/013043
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study how quantum and thermal noise affects synchronization of two optomechanical limit-cycle oscillators. Classically, in the absence of noise, optomechanical systems tend to synchronize either in-phase or anti-phase. Taking into account the fundamental quantum noise, we find a regime where fluctuations drive transitions between these classical synchronization states. We investigate how this 'mixed' synchronization regime emerges from the noiseless system by studying the classical-to-quantum crossover and we show how the time scales of the transitions vary with the effective noise strength. In addition, we compare the effects of thermal noise to the effects of quantum noise.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] REENTRANCE PHENOMENA IN NOISE-INDUCED TRANSITIONS
    CASTRO, F
    SANCHEZ, AD
    WIO, HS
    PHYSICAL REVIEW LETTERS, 1995, 75 (09) : 1691 - 1694
  • [22] Noise-Induced Transitions in Neuronal Oscillations
    Chen, Mingming
    Zhu, Yajie
    Zhang, Rui
    Wan, Hong
    Dianzi Keji Daxue Xuebao/Journal of the University of Electronic Science and Technology of China, 2022, 51 (01): : 32 - 38
  • [23] NOISE-INDUCED TRANSITIONS IN AN EXCITABLE SYSTEM
    LHEUREUX, I
    KAPRAL, R
    BARELI, K
    JOURNAL OF CHEMICAL PHYSICS, 1989, 91 (07): : 4285 - 4298
  • [24] Complex synchronization transitions in globally coupled excitable systems with noise-induced coherent oscillations
    Jinjie Zhu
    Yuzuru Kato
    Hiroya Nakao
    Communications Physics, 8 (1)
  • [25] Additive noise and noise-induced nonequilibrium phase transitions
    Zaikin, A
    Kurths, J
    UNSOLVED PROBLEMS OF NOISE AND FLUCTUATIONS, 2000, 511 : 303 - 313
  • [26] Intermittent behavior at the boundary of noise-induced synchronization
    O. I. Moskalenko
    A. A. Koronovskii
    S. A. Shurygina
    Technical Physics, 2011, 56 : 1369 - 1372
  • [27] Design and control of noise-induced synchronization patterns
    Kurebayashi, W.
    Ishii, T.
    Hasegawa, M.
    Nakao, H.
    EPL, 2014, 107 (01)
  • [28] Noise-induced synchronization of uncoupled nonlinear systems
    Yoshida, Katsutoshi
    Sato, Keijin
    Fukuda, Toru
    INTERNATIONAL JOURNAL OF INNOVATIVE COMPUTING INFORMATION AND CONTROL, 2005, 1 (03): : 325 - 340
  • [29] Classical colored noise-induced quantum synchronization
    X. Y. Huang
    Q. Ma
    M. K. Wu
    W. W. Cheng
    Quantum Information Processing, 22
  • [30] Noise-induced binary synchronization in nonlinear systems
    O. I. Moskalenko
    A. A. Koronovskii
    A. E. Hramov
    Technical Physics Letters, 2016, 42 : 737 - 739