Artificial intelligence-enabled fully automated detection of cardiac amyloidosis using electrocardiograms and echocardiograms

被引:140
作者
Goto, Shinichi [1 ,2 ,3 ]
Mahara, Keitaro [4 ]
Beussink-Nelson, Lauren [5 ]
Ikura, Hidehiko [3 ]
Katsumata, Yoshinori [3 ]
Endo, Jin [3 ]
Gaggin, Hanna K. [2 ,6 ]
Shah, Sanjiv J. [5 ]
Itabashi, Yuji [3 ]
MacRae, Calum A. [1 ,2 ]
Deo, Rahul C. [1 ,2 ,7 ,8 ,9 ]
机构
[1] Brigham & Womens Hosp, Dept Med, One Brave Idea & Div Cardiovasc Med, Boston, MA 02115 USA
[2] Harvard Med Sch, Boston, MA 02115 USA
[3] Keio Univ, Dept Cardiol, Shinjuku Ku, Sch Med, Tokyo, Japan
[4] Harvard TH Chan Sch Publ Hlth, Dept Epidemiol, Boston, MA USA
[5] Northwestern Univ, Feinberg Cardiovasc Res Inst, Div Cardiol, Feinberg Sch Med, Chicago, IL USA
[6] Massachusetts Gen Hosp, Div Cardiol, Boston, MA USA
[7] Univ Calif San Francisco, Ctr Digital Hlth Innovat, San Francisco, CA 94143 USA
[8] Univ Calif San Francisco, Dept Med, San Francisco, CA 94143 USA
[9] Northwestern Univ, Dept Prevent Med, Feinberg Sch Med, Chicago, IL 60611 USA
关键词
SYSTEMIC AMYLOIDOSIS; AORTIC-STENOSIS; PREVALENCE; PREDICTORS; VOLTAGE;
D O I
10.1038/s41467-021-22877-8
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Patients with rare conditions such as cardiac amyloidosis (CA) are difficult to identify, given the similarity of disease manifestations to more prevalent disorders. The deployment of approved therapies for CA has been limited by delayed diagnosis of this disease. Artificial intelligence (AI) could enable detection of rare diseases. Here we present a pipeline for CA detection using AI models with electrocardiograms (ECG) or echocardiograms as inputs. These models, trained and validated on 3 and 5 academic medical centers (AMC) respectively, detect CA with C-statistics of 0.85-0.91 for ECG and 0.89-1.00 for echocardiography. Simulating deployment on 2 AMCs indicated a positive predictive value (PPV) for the ECG model of 3-4% at 52-71% recall. Pre-screening with ECG enhance the echocardiography model performance at 67% recall from PPV of 33% to PPV of 74-77%. In conclusion, we developed an automated strategy to augment CA detection, which should be generalizable to other rare cardiac diseases. Cardiac amyloidosis is difficult to identify, given low prevalence and similarity of the symptoms to more prevalent disorders. Here the authors present a multi-modality, artificial intelligence-enabled pipeline, that enables automated detection of cardiac amyloidosis from inexpensive and accessible measures.
引用
收藏
页数:12
相关论文
共 29 条
[1]  
Abadi M, 2016, PROCEEDINGS OF OSDI'16: 12TH USENIX SYMPOSIUM ON OPERATING SYSTEMS DESIGN AND IMPLEMENTATION, P265
[2]   Repurposing Diflunisal for Familial Amyloid Polyneuropathy A Randomized Clinical Trial [J].
Berk, John L. ;
Suhr, Ole B. ;
Obici, Laura ;
Sekijima, Yoshiki ;
Zeldenrust, Steven R. ;
Yamashita, Taro ;
Heneghan, Michael A. ;
Gorevic, Peter D. ;
Litchy, William J. ;
Wiesman, Janice F. ;
Nordh, Erik ;
Corato, Manuel ;
Lozza, Alessandro ;
Cortese, Andrea ;
Robinson-Papp, Jessica ;
Colton, Theodore ;
Rybin, Denis V. ;
Bisbee, Alice B. ;
Ando, Yukio ;
Ikeda, Shu-ichi ;
Seldin, David C. ;
Merlini, Giampaolo ;
Skinner, Martha ;
Kelly, Jeffery W. ;
Dyck, Peter J. .
JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2013, 310 (24) :2658-2667
[3]   Unveiling transthyretin cardiac amyloidosis and its predictors among elderly patients with severe aortic stenosis undergoing transcatheter aortic valve replacement [J].
Castano, Adam ;
Narotsky, David L. ;
Hamid, Nadira ;
Khalique, Omar K. ;
Morgenstern, Rachelle ;
DeLuca, Albert ;
Rubin, Jonah ;
Chiuzan, Codruta ;
Nazif, Tamim ;
Vahl, Torsten ;
George, Isaac ;
Kodali, Susheel ;
Leon, Martin B. ;
Hahn, Rebecca ;
Bokhari, Sabahat ;
Maurer, Mathew S. .
EUROPEAN HEART JOURNAL, 2017, 38 (38) :2879-2887
[4]   Cardiac amyloidosis is prevalent in older patients with aortic stenosis and carries worse prognosis [J].
Cavalcante, Joao L. ;
Rijal, Shasank ;
Abdelkarim, Islam ;
Althouse, Andrew D. ;
Sharbaugh, Michael S. ;
Fridman, Yaron ;
Soman, Prem ;
Forman, Daniel E. ;
Schindler, John T. ;
Gleason, Thomas G. ;
Lee, Joon S. ;
Schelbert, Erik B. .
JOURNAL OF CARDIOVASCULAR MAGNETIC RESONANCE, 2017, 19
[5]  
Choi BCK, 1998, AM J EPIDEMIOL, V148, P1127
[6]   Prevalence and Prognostic Significance of Low QRS Voltage Among the Three Main Types of Cardiac Amyloidosis [J].
Cyrille, Nicole B. ;
Goldsmith, Jeff ;
Alvarez, Julissa ;
Maurer, Mathew S. .
AMERICAN JOURNAL OF CARDIOLOGY, 2014, 114 (07) :1089-1093
[7]   Clinical, ECG and echocardiographic clues to the diagnosis of TTR-related cardiomyopathy [J].
Damy, Thibaud ;
Maurer, Mathew S. ;
Rapezzi, Claudio ;
Plante-Bordeneuve, Violaine ;
Karayal, Onur N. ;
Mundayat, Rajiv ;
Suhr, Ole B. ;
Kristen, Arnt V. .
OPEN HEART, 2016, 3 (01)
[8]   Inotersen therapy of transthyretin amyloid cardiomyopathy [J].
Dasgupta, Noel R. ;
Rissing, Stacy M. ;
Smith, Jessica ;
Jung, Jeesun ;
Benson, Merrill D. .
AMYLOID-JOURNAL OF PROTEIN FOLDING DISORDERS, 2020, 27 (01) :52-58
[9]   How to Image Cardiac Amyloidosis A Practical Approach [J].
Dorbala, Sharmila ;
Cuddy, Sarah ;
Falk, Rodney H. .
JACC-CARDIOVASCULAR IMAGING, 2020, 13 (06) :1368-1383
[10]   Immunoglobulin light chain amyloidosis: 2018 Update on diagnosis, prognosis, and treatment [J].
Gertz, Morie A. .
AMERICAN JOURNAL OF HEMATOLOGY, 2018, 93 (09) :1169-1180