Some open problems concerning the star-discrepancy

被引:12
作者
Heinrich, S [1 ]
机构
[1] Univ Kaiserslautern, FB Informat, D-67653 Kaiserslautern, Germany
关键词
D O I
10.1016/S0885-064X(03)00014-1
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We discuss open problems on the minimal star-discrepancy of an n-point set in the d-dimensional unit cube [0, 1](d). We emphasize the aspect of dimension dependence and of simultaneous dependence on n and d. (C) 2003 Elsevier Science (USA). All rights reserved.
引用
收藏
页码:416 / 419
页数:4
相关论文
共 10 条
[1]  
[Anonymous], 1999, GEOMETRIC DISCREPANC
[2]  
[Anonymous], 1997, LECT NOTES MATH
[3]   On irregularities of distribution II [J].
Baker, RC .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1999, 59 :50-64
[4]  
Beck J., 1987, Cambridge Tracts in Mathematics, V89
[5]  
Halton J.H., 1960, NUMER MATH, V2, P84, DOI [10.1007/BF01386213, DOI 10.1007/BF01386213]
[6]   The inverse of the star-discrepancy depends linearly on the dimension [J].
Heinrich, S ;
Novak, E ;
Wasilkowski, GW ;
Wozniakowski, H .
ACTA ARITHMETICA, 2001, 96 (03) :279-302
[7]   The exponent of discrepancy is at least 1.0669 [J].
Matousek, J .
JOURNAL OF COMPLEXITY, 1998, 14 (04) :448-453
[8]  
Niederreiter H., 1992, RANDOM NUMBER GENERA
[9]  
Schmidt W., 1972, Acta Arith., V21, P45
[10]  
WOZNIAKOWSKI H, J COMPLEXITY