A quantum router architecture for high-fidelity entanglement flows in quantum networks

被引:40
作者
Lee, Yuan [1 ]
Bersin, Eric [1 ]
Dahlberg, Axel [2 ,3 ]
Wehner, Stephanie [2 ,3 ]
Englund, Dirk [1 ,4 ]
机构
[1] MIT, Dept Elect Engn & Comp Sci, Cambridge, MA 02139 USA
[2] Delft Univ Technol, QuTech, Delft, Netherlands
[3] Kavli Inst Nanosci Delft, Delft, Netherlands
[4] MIT, Res Lab Elect, 77 Massachusetts Ave, Cambridge, MA 02139 USA
关键词
ATOMS;
D O I
10.1038/s41534-022-00582-8
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The past decade has seen tremendous progress in experimentally realizing the building blocks of quantum repeaters. Repeater architectures with multiplexed quantum memories have been proposed to increase entanglement distribution rates, but an open challenge is to maintain entanglement fidelity over long-distance links. Here, we address this with a quantum router architecture comprising many quantum memories connected in a photonic switchboard to broker entanglement flows across quantum networks. We compute the rate and fidelity of entanglement distribution under this architecture using an event-based simulator, finding that the router improves the entanglement fidelity as multiplexing depth increases without a significant drop in the entanglement distribution rate. Specifically, the router permits channel-loss-invariant fidelity, i.e. the same fidelity achievable with lossless links. Furthermore, this scheme automatically prioritizes entanglement flows across the full network without requiring global network information. The proposed architecture uses present-day photonic technology, opening a path to near-term deployable multi-node quantum networks.
引用
收藏
页数:8
相关论文
共 38 条
[1]   All-photonic intercity quantum key distribution [J].
Azuma, Koji ;
Tamaki, Kiyoshi ;
Munro, William J. .
NATURE COMMUNICATIONS, 2015, 6
[2]   Efficient high-fidelity quantum computation using matter qubits and linear optics [J].
Barrett, SD ;
Kok, P .
PHYSICAL REVIEW A, 2005, 71 (06)
[3]   Brokered graph-state quantum computation [J].
Benjamin, Simon C. ;
Browne, Daniel E. ;
Fitzsimons, Joe ;
Morton, John J. L. .
NEW JOURNAL OF PHYSICS, 2006, 8
[4]   Experimental demonstration of memory-enhanced quantum communication [J].
Bhaskar, M. K. ;
Riedinger, R. ;
Machielse, B. ;
Levonian, D. S. ;
Nguyen, C. T. ;
Knall, E. N. ;
Park, H. ;
Englund, D. ;
Loncar, M. ;
Sukachev, D. D. ;
Lukin, M. D. .
NATURE, 2020, 580 (7801) :60-+
[5]   Programmable photonic circuits [J].
Bogaerts, Wim ;
Perez, Daniel ;
Capmany, Jose ;
Miller, David A. B. ;
Poon, Joyce ;
Englund, Dirk ;
Morichetti, Francesco ;
Melloni, Andrea .
NATURE, 2020, 586 (7828) :207-216
[6]   Quantum repeaters:: The role of imperfect local operations in quantum communication [J].
Briegel, HJ ;
Dür, W ;
Cirac, JI ;
Zoller, P .
PHYSICAL REVIEW LETTERS, 1998, 81 (26) :5932-5935
[7]   Creation of entangled states of distant atoms by interference [J].
Cabrillo, C ;
Cirac, JI ;
García-Fernández, P ;
Zoller, P .
PHYSICAL REVIEW A, 1999, 59 (02) :1025-1033
[8]   A polarization encoded photon-to-spin interface [J].
Chen, K. C. ;
Bersin, E. ;
Englund, D. .
NPJ QUANTUM INFORMATION, 2021, 7 (01)
[9]   NetSquid, a NETwork Simulator for QUantum Information using Discrete events [J].
Coopmans, Tim ;
Knegjens, Robert ;
Dahlberg, Axel ;
Maier, David ;
Nijsten, Loek ;
de Oliveira Filho, Julio ;
Papendrecht, Martijn ;
Rabbie, Julian ;
Rozpedek, Filip ;
Skrzypczyk, Matthew ;
Wubben, Leon ;
de Jong, Walter ;
Podareanu, Damian ;
Torres-Knoop, Ariana ;
Elkouss, David ;
Wehner, Stephanie .
COMMUNICATIONS PHYSICS, 2021, 4 (01)
[10]   Repeated quantum error correction on a continuously encoded qubit by real-time feedback [J].
Cramer, J. ;
Kalb, N. ;
Rol, M. A. ;
Hensen, B. ;
Blok, M. S. ;
Markham, M. ;
Twitchen, D. J. ;
Hanson, R. ;
Taminiau, T. H. .
NATURE COMMUNICATIONS, 2016, 7