Orthogonality of matrices

被引:33
作者
Benitez, Carlos [1 ]
Fernandez, Manuel [1 ]
Soriano, Maria L. [1 ]
机构
[1] Univ Extremadura, Dept Matemat, E-06071 Badajoz, Spain
关键词
orthogonality of matrices; characterization of inner product spaces;
D O I
10.1016/j.laa.2006.09.018
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let X be a real finite-dimensional normed space with unit sphere S-X and let LP(X) be the space of linear operators front X into itself. It is proved that X is an inner product space if and only if for A, C epsilon L(X) A perpendicular to C double left right arrow* there exists u is an element of S-X : parallel to A parallel to = parallel to Au parallel to, Au perpendicular to Cu, where perpendicular to denotes Birkhoff orthogonality. (c) 2006 Elsevier Inc. All rights reserved.
引用
收藏
页码:155 / 163
页数:9
相关论文
共 7 条
[1]  
Amir D., 1986, CHARACTERIZATION INN
[2]  
BENITEZ C, 1984, REV ROUM MATH PURE A, V29, P543
[3]   Orthogonality of matrices and some distance problems [J].
Bhatia, R ;
Semrl, P .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1999, 287 (1-3) :77-85
[4]  
Birkhoff G., 1935, Duke Math. J, V1, P169, DOI [10.1215/S0012-7094-35-00115-6, DOI 10.1215/S0012-7094-35-00115-6.H17I]
[5]  
JAMES RC, 1947, T AM MATH SOC, V61, P265
[6]   Orthogonality of matrices [J].
Li, CK ;
Schneider, H .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2002, 347 :115-122
[7]  
OMAN J, 1975, LECT NOTES MATH, V490, P116