Existence and uniqueness of solutions of differential equations of fractional order with integral boundary conditions

被引:36
作者
Nanware, J. A. [1 ]
Dhaigude, D. B. [2 ]
机构
[1] Shrikrishna Mahavidyalaya, Dept Math, Osmanabad 413606, MS, India
[2] Dr Babasaheb Ambedkar Marathwada Univ, Dept Math, Aurangabad 431004, Maharashtra, India
来源
JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS | 2014年 / 7卷 / 04期
关键词
Fractional differential equations; existence and uniqueness; lower and upper solutions; integral boundary conditions;
D O I
10.22436/jnsa.007.04.02
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Recently, Wang and Xie [T. Wang, F. Xie, J. Nonlinear Sci. Appl., 1 (2009), 206-212] developed monotone iterative method for Riemann-Liouville fractional differential equations with integral boundary conditions with the strong hypothesis of locally Holder continuity and obtained existence and uniqueness of a solution for the problem. In this paper, we apply the comparison result without locally Holder continuity due to Vasundhara Devi to develop monotone iterative method for the problem and obtain existence and uniqueness of a solution of the problem. (C)2014 All rights reserved.
引用
收藏
页码:246 / 254
页数:9
相关论文
共 29 条
[1]   On fractional integro-differential equations with state-dependent delay [J].
Agarwal, Ravi P. ;
de Andrade, Bruno ;
Siracusa, Giovana .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2011, 62 (03) :1143-1149
[2]   On Type of Periodicity and Ergodicity to a Class of Fractional Order Differential Equations [J].
Agarwal, Ravi P. ;
de Andrade, Bruno ;
Cuevas, Claudio .
ADVANCES IN DIFFERENCE EQUATIONS, 2010,
[3]   A Survey on Existence Results for Boundary Value Problems of Nonlinear Fractional Differential Equations and Inclusions [J].
Agarwal, Ravi P. ;
Benchohra, Mouffak ;
Hamani, Samira .
ACTA APPLICANDAE MATHEMATICAE, 2010, 109 (03) :973-1033
[4]  
[Anonymous], 1999, FRACTIONAL DIFFERENT
[5]  
[Anonymous], 2006, Journal of the Electrochemical Society
[6]  
[Anonymous], 2007, Discrete Contin. Dyn. Syst., DOI 10.3934/proc.2007.2007.277
[7]   Almost periodic and pseudo-almost periodic solutions to fractional differential and integro-differential equations [J].
Cuevas, Claudio ;
Sepulveda, Alex ;
Soto, Herme .
APPLIED MATHEMATICS AND COMPUTATION, 2011, 218 (05) :1735-1745
[8]  
Devi J.V., 2008, Commun. Appl. Anal, V12, P399
[9]   Variational Lyapunov method for fractional differential equations [J].
Devi, J. Vasundhara ;
Mc Rae, F. A. ;
Drici, Z. .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2012, 64 (10) :2982-2989
[10]  
Dhaigude D. B., 2012, DYN CONTI DIS IMPU A, V19, P575