On the structure of hoops

被引:172
作者
Blok, WJ
Ferreirim, IMA
机构
[1] Univ Illinois, Dept Math Stat & Comp Sci, Chicago, IL 60607 USA
[2] Univ Lisbon, Fac Ciencias, Dept Matemat, P-1749016 Lisbon, Portugal
[3] Univ Lisbon, Ctr Algebra, P-1649003 Lisbon, Portugal
关键词
Basic Property; Finite Member; Integral Monoid; Residuated Integral Monoid;
D O I
10.1007/s000120050156
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A hoop is a naturally ordered pocrim (i.e., a partially ordered commutative residuated integral monoid). We list some basic properties of hoops, describe in detail the structure of subdirectly irreducible hoops, and establish that the class of hoops, which is a variety, is generated, as a quasivariety, by its finite members.
引用
收藏
页码:233 / 257
页数:25
相关论文
共 40 条
[1]   EQUATIONALLY COMPLETE CLASSES OF COMMUTATIVE MONOIDS WITH MONUS [J].
AMER, K .
ALGEBRA UNIVERSALIS, 1984, 18 (01) :129-131
[2]  
Anderson M., 1988, LATTICE ORDERED GROU
[3]  
[Anonymous], 1958, T AM MATH SOC
[4]  
[Anonymous], REPORTS MATH LOGIC
[5]  
[Anonymous], 1983, LOGIC SEMANTICS META
[6]  
Birkhoff G., 1967, AM MATH SOC C PUBL, VXXV
[7]  
Blok W., 1989, MEM AM MATH SOC, V396
[8]   ON THE STRUCTURE OF VARIETIES WITH EQUATIONALLY DEFINABLE PRINCIPAL CONGRUENCES .3. [J].
BLOK, WJ ;
PIGOZZI, D .
ALGEBRA UNIVERSALIS, 1994, 32 (04) :545-608
[9]  
BLOK WJ, 1993, BANACH CTR PUBLICATI, V28, P219
[10]  
Bosbach B., 1969, FUND MATH, V64, P257, DOI DOI 10.4064/FM-64-3-257-287