Creating electrochemical gradients by light: from bio-inspired concepts to photoelectric conversion

被引:27
作者
Xie, Xiaojiang [1 ]
Bakker, Eric [1 ]
机构
[1] Univ Geneva, Dept Inorgan & Analyt Chem, CH-1211 Geneva, Switzerland
基金
瑞士国家科学基金会;
关键词
TRANSMEMBRANE CHARGE-TRANSPORT; DRIVEN PROTON PUMP; PHOTOCURRENT GENERATION; ENERGY-CONVERSION; ELECTRON-TRANSFER; ION PERMEATION; VISIBLE-LIGHT; SOLAR-CELL; BACTERIORHODOPSIN; EFFICIENCY;
D O I
10.1039/c4cp02566k
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Light is harvested by natural photosynthetic systems to generate electrochemical gradients that power various reactions. Implementing nature's lessons in photosynthesis holds great promise for technological advances. With a focus on designs and concepts, recent progress in generating electrochemical gradients by light, mimicking the two general types of photosynthetic centers in nature that make use of either light-induced charge separation or photo-isomerization are summarized here. Light induced electrochemical gradients pave new ways for photoelectric conversion. While extensive research in this direction has focused on light-induced charge separation, recent work has shown that energy conversion based on photo-isomerization is very promising. Photoswitchable compounds have been found in nature, such as the retinal molecule in bacteriorhodopsin. These compounds may form an attractive molecular basis for future progress in this field.
引用
收藏
页码:19781 / 19789
页数:9
相关论文
共 71 条
[1]  
[Anonymous], 2001, ELECTROCHEMICAL METH
[2]  
Baltscheffsky H., 1996, Origin and evolution of biological enegy conversion
[3]   Microbial rhodopsins in the spotlight [J].
Bamann, Christian ;
Nagel, Georg ;
Bamberg, Ernst .
CURRENT OPINION IN NEUROBIOLOGY, 2010, 20 (05) :610-616
[4]   Photosynthetic energy conversion: natural and artificial [J].
Barber, James .
CHEMICAL SOCIETY REVIEWS, 2009, 38 (01) :185-196
[5]   Active transport of Ca2+ by an artificial photosynthetic membrane [J].
Bennett, IM ;
Farfano, HMV ;
Bogani, F ;
Primak, A ;
Liddell, PA ;
Otero, L ;
Sereno, L ;
Silber, JJ ;
Moore, AL ;
Moore, TA ;
Gust, D .
NATURE, 2002, 420 (6914) :398-401
[6]   Photoproduction of proton gradients with π-stacked fluorophore scaffolds in lipid bilayers [J].
Bhosale, Sheshanath ;
Sisson, Adam L. ;
Talukdar, Pinaki ;
Fuerstenberg, Alexandre ;
Banerji, Natalie ;
Vauthey, Eric ;
Bollot, Guillaume ;
Mareda, Jiri ;
Roger, Cornelia ;
Wuerthner, Frank ;
Sakai, Naomi ;
Matile, Stefan .
SCIENCE, 2006, 313 (5783) :84-86
[7]   Comparing Photosynthetic and Photovoltaic Efficiencies and Recognizing the Potential for Improvement [J].
Blankenship, Robert E. ;
Tiede, David M. ;
Barber, James ;
Brudvig, Gary W. ;
Fleming, Graham ;
Ghirardi, Maria ;
Gunner, M. R. ;
Junge, Wolfgang ;
Kramer, David M. ;
Melis, Anastasios ;
Moore, Thomas A. ;
Moser, Christopher C. ;
Nocera, Daniel G. ;
Nozik, Arthur J. ;
Ort, Donald R. ;
Parson, William W. ;
Prince, Roger C. ;
Sayre, Richard T. .
SCIENCE, 2011, 332 (6031) :805-809
[8]   Sequential deposition as a route to high-performance perovskite-sensitized solar cells [J].
Burschka, Julian ;
Pellet, Norman ;
Moon, Soo-Jin ;
Humphry-Baker, Robin ;
Gao, Peng ;
Nazeeruddin, Mohammad K. ;
Graetzel, Michael .
NATURE, 2013, 499 (7458) :316-+
[9]   Photocurrent generation in metal bisphosphonate multilayer thin films [J].
Byrd, H ;
Suponeva, EP ;
Bocarsly, AB ;
Thompson, ME .
NATURE, 1996, 380 (6575) :610-612
[10]   Dynamics of Light Harvesting in Photosynthesis [J].
Cheng, Yuan-Chung ;
Fleming, Graham R. .
ANNUAL REVIEW OF PHYSICAL CHEMISTRY, 2009, 60 :241-262