Lithography for robust and editable atomic-scale silicon devices and memories

被引:102
作者
Achal, Roshan [1 ,2 ]
Rashidi, Mohammad [1 ,2 ]
Croshaw, Jeremiah [1 ]
Churchill, David [3 ]
Taucer, Marco [1 ,2 ]
Huff, Taleana [1 ,2 ]
Cloutier, Martin [4 ]
Pitters, Jason [2 ,4 ]
Wolkow, Robert A. [1 ,2 ,4 ]
机构
[1] Univ Alberta, Dept Phys, Edmonton, AB T6G 2E1, Canada
[2] Quantum Silicon Inc, Edmonton, AB T6G 2M9, Canada
[3] Mem Univ Newfoundland, St John, NF A1B 3X5, Canada
[4] Natl Res Council Canada, Nanotechnol Res Ctr, Edmonton, AB T6G 2M9, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
SCANNING-TUNNELING-MICROSCOPY; HYDROGEN-ATOMS; FABRICATION; ADSORPTION; SURFACES; DESORPTION; DYNAMICS; MOBILITY; TUNGSTEN; STATE;
D O I
10.1038/s41467-018-05171-y
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
At the atomic scale, there has always been a trade-off between the ease of fabrication of structures and their thermal stability. Complex structures that are created effortlessly often disorder above cryogenic conditions. Conversely, systems with high thermal stability do not generally permit the same degree of complex manipulations. Here, we report scanning tunneling microscope (STM) techniques to substantially improve automated hydrogen lithography (HL) on silicon, and to transform state-of-the-art hydrogen repassivation into an efficient, accessible error correction/editing tool relative to existing chemical and mechanical methods. These techniques are readily adapted to many STMs, together enabling fabrication of error-free, room-temperature stable structures of unprecedented size. We created two rewriteable atomic memories (1.1 petabits per in(2)), storing the alphabet letter-by-letter in 8 bits and a piece of music in 192 bits. With HL no longer faced with this trade-off, practical silicon-based atomic-scale devices are poised to make rapid advances towards their full potential.
引用
收藏
页数:8
相关论文
共 48 条
[1]  
BALLARD JB, 2014, J VAC SCI TECHNOL B, V32
[2]   Atomic-scale visualization and surface electronic structure of the hydrogenated diamond C(100)-(2x1):H surface -: art. no. 195416 [J].
Bobrov, K ;
Mayne, A ;
Comtet, G ;
Dujardin, G ;
Hellner, L ;
Hoffman, A .
PHYSICAL REVIEW B, 2003, 68 (19)
[3]   Two-electron spin correlations in precision placed donors in silicon [J].
Broome, M. A. ;
Gorman, S. K. ;
House, M. G. ;
Hile, S. J. ;
Keizer, J. G. ;
Keith, D. ;
Hill, C. D. ;
Watson, T. F. ;
Baker, W. J. ;
Hollenberg, L. C. L. ;
Simmons, M. Y. .
NATURE COMMUNICATIONS, 2018, 9
[4]  
Butera R., 2018, APS MARCH M AM PHYS
[5]   Patterning of sub-1 nm dangling-bond lines with atomic precision alignment on H:Si(100) surface at room temperature [J].
Chen, S. ;
Xu, H. ;
Goh, K. E. J. ;
Liu, Lerwen ;
Randall, J. N. .
NANOTECHNOLOGY, 2012, 23 (27)
[6]   Chemical methods for the hydrogen termination of silicon dangling bonds [J].
Dogel, I. A. ;
Dogel, S. A. ;
Pitters, J. L. ;
DiLabio, G. A. ;
WolkoW, R. A. .
CHEMICAL PHYSICS LETTERS, 2007, 448 (4-6) :237-242
[7]   Dissociative adsorption of molecular hydrogen on silicon surfaces [J].
Duerr, M. ;
Hoefer, U. .
SURFACE SCIENCE REPORTS, 2006, 61 (12) :465-526
[8]   POSITIONING SINGLE ATOMS WITH A SCANNING TUNNELING MICROSCOPE [J].
EIGLER, DM ;
SCHWEIZER, EK .
NATURE, 1990, 344 (6266) :524-526
[9]   High mobility two-dimensional electron system on hydrogen-passivated silicon(111) surfaces [J].
Eng, K ;
McFarland, RN ;
Kane, BE .
APPLIED PHYSICS LETTERS, 2005, 87 (05)
[10]  
Fuechsle M, 2012, NAT NANOTECHNOL, V7, P242, DOI [10.1038/NNANO.2012.21, 10.1038/nnano.2012.21]