A comparative analysis of cell-type adjustment methods for epigenome-wide association studies based on simulated and real data sets

被引:16
作者
Braegelmann, Johannes [2 ]
Bermejo, Justo Lorenzo [1 ]
机构
[1] Heidelberg Univ, Inst Med Biometry & Informat, Heidelberg, Germany
[2] Univ Hosp Cologne, Cologne, Germany
关键词
epigenome-wide association studies; methylation; cell-type adjustment methods; simulation study; epigenetics; LINEAR MIXED MODELS; DNA METHYLATION; CANCER; GENOME; POPULATION; SMOKING; BLOOD; HETEROGENEITY; VALIDATION; MICROARRAY;
D O I
10.1093/bib/bby068
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Technological advances and reduced costs of high-density methylation arrays have led to an increasing number of association studies on the possible relationship between human disease and epigenetic variability. DNA samples from peripheral blood or other tissue types are analyzed in epigenome-wide association studies (EWAS) to detect methylation differences related to a particular phenotype. Since information on the cell-type composition of the sample is generally not available and methylation profiles are cell-type specific, statistical methods have been developed for adjustment of cell-type heterogeneity in EWAS. In this study we systematically compared five popular adjustment methods: the factored spectrally transformed linear mixed model (FaST-LMM-EWASher), the sparse principal component analysis algorithm ReFACTor, surrogate variable analysis (SVA), independent SVA (ISVA) and an optimized version of SVA (SmartSVA). We used real data and applied a multilayered simulation framework to assess the type I error rate, the statistical power and the quality of estimated methylation differences according to major study characteristics. While all five adjustment methods improved false-positive rates compared with unadjusted analyses, FaST-LMM-EWASher resulted in the lowest type I error rate at the expense of low statistical power. SVA efficiently corrected for cell-type heterogeneity in EWAS up to 200 cases and 200 controls, but did not control type I error rates in larger studies. Results based on real data sets confirmed simulation findings with the strongest control of type I error rates by FaST-LMM-EWASher and SmartSVA. Overall, ReFACTor, ISVA and SmartSVA showed the best comparable statistical power, quality of estimated methylation differences and runtime.
引用
收藏
页码:2055 / 2065
页数:11
相关论文
共 47 条
[1]   The power of genomic control [J].
Bacanu, SA ;
Devlin, B ;
Roeder, K .
AMERICAN JOURNAL OF HUMAN GENETICS, 2000, 66 (06) :1933-1944
[2]   DNA methylation changes measured in pre-diagnostic peripheral blood samples are associated with smoking and lung cancer risk [J].
Baglietto, Laura ;
Ponzi, Erica ;
Haycock, Philip ;
Hodge, Allison ;
Assumma, Manuela Bianca ;
Jung, Chol-Hee ;
Chung, Jessica ;
Fasanelli, Francesca ;
Guida, Florence ;
Campanella, Gianluca ;
Chadeau-Hyam, Marc ;
Grankvist, Kjell ;
Johansson, Mikael ;
Ala, Ugo ;
Provero, Paolo ;
Wong, Ee Ming ;
Joo, Jihoon ;
English, Dallas R. ;
Kazmi, Nabila ;
Lund, Eiliv ;
Faltus, Christian ;
Kaaks, Rudolf ;
Risch, Angela ;
Barrdahl, Myrto ;
Sandanger, Torkjel M. ;
Southey, Melissa C. ;
Giles, Graham G. ;
Johansson, Mattias ;
Vineis, Paolo ;
Polidoro, Silvia ;
Relton, Caroline L. ;
Severi, Gianluca .
INTERNATIONAL JOURNAL OF CANCER, 2017, 140 (01) :50-61
[3]  
Bauer M, 2016, CLIN EPIGENETICS, V8, DOI [10.1186/s13148-015-0113-1, 10.1186/s13148-016-0249-7]
[4]   The mammalian epigenome [J].
Bernstein, Bradley E. ;
Meissner, Alexander ;
Lander, Eric S. .
CELL, 2007, 128 (04) :669-681
[5]  
Birney E, 2016, PLOS GENET, V12, P1
[6]   Publication Bias in Methodological Computational Research [J].
Boulesteix, Anne-Laure ;
Stierle, Veronika ;
Hapfelmeier, Alexander .
CANCER INFORMATICS, 2015, 14 :11-19
[7]   Fast and robust adjustment of cell mixtures in epigenome-wide association studies with SmartSVA [J].
Chen, Jun ;
Behnam, Ehsan ;
Huang, Jinyan ;
Moffatt, Miriam F. ;
Schaid, Daniel J. ;
Liang, Liming ;
Lin, Xihong .
BMC GENOMICS, 2017, 18
[8]   An epigenome-wide association study of total serum IgE in Hispanic children [J].
Chen, Wei ;
Wang, Ting ;
Pino-Yanes, Maria ;
Forno, Erick ;
Liang, Liming ;
Yan, Qi ;
Hu, Donglei ;
Weeks, Daniel E. ;
Baccarelli, Andrea ;
Acosta-Perez, Edna ;
Eng, Celeste ;
Han, Yueh-Ying ;
Boutaoui, Nadia ;
Laprise, Catherine ;
Davies, Gwyneth A. ;
Hopkin, Julian M. ;
Moffatt, Miriam F. ;
Cookson, William O. C. M. ;
Canino, Glorisa ;
Burchard, Esteban G. ;
Celedon, Juan C. .
JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY, 2017, 140 (02) :571-577
[9]   Discovery of cross-reactive probes and polymorphic CpGs in the Illumina Infinium HumanMethylation450 microarray [J].
Chen, Yi-an ;
Lemire, Mathieu ;
Choufani, Sanaa ;
Butcher, Darci T. ;
Grafodatskaya, Daria ;
Zanke, Brent W. ;
Gallinger, Steven ;
Hudson, Thomas J. ;
Weksberg, Rosanna .
EPIGENETICS, 2013, 8 (02) :203-209
[10]   Coffee consumption is associated with DNA methylation levels of human blood [J].
Chuang, Yu-Hsuan ;
Quach, Austin ;
Absher, Devin ;
Assimes, Themistocles ;
Horvath, Steve ;
Ritz, Beate .
EUROPEAN JOURNAL OF HUMAN GENETICS, 2017, 25 (05) :608-616