3D Printing-Enabled Nanoparticle Alignment: A Review of Mechanisms and Applications

被引:109
作者
Xu, Weiheng [1 ]
Jambhulkar, Sayli [1 ]
Ravichandran, Dharneedar [1 ]
Zhu, Yuxiang [1 ]
Kakarla, Mounika [2 ]
Nian, Qiong [3 ,4 ]
Azeredo, Bruno [1 ]
Chen, Xiangfan [5 ]
Jin, Kailong [6 ,7 ]
Vernon, Brent [8 ]
Lott, David G. [9 ,10 ]
Cornella, Jeffrey L. [11 ]
Shefi, Orit [12 ]
Miquelard-Garnier, Guillaume [13 ]
Yang, Yang [14 ]
Song, Kenan [15 ]
机构
[1] Arizona State Univ, Ira A Fulton Sch Engn, Polytech Sch TPS, 6075 S Innovat Way West, Mesa, AZ 85212 USA
[2] Arizona State Univ, Ira A Fulton Sch Engn, Dept Mat Sci & Engn, 501 E Tyler Mall, Tempe, AZ 85287 USA
[3] Arizona State Univ, Ira A Fulton Sch Engn, Dept Mech Engn, 501 E Tyler Mall, Tempe, AZ 85287 USA
[4] Arizona State Univ, Ira A Fulton Sch Engn, Multiscale Mfg Mat Proc Lab MMMPL, 501 E Tyler Mall, Tempe, AZ 85287 USA
[5] Arizona State Univ, Ira A Fulton Sch Engn, Adv Mfg & Funct Devices AMFD Lab, 6075 Innovat Way W, Mesa, AZ 85212 USA
[6] Arizona State Univ, Sch Engn Matter Transport & Energy SEMTE, Dept Chem Engn, 501 E Tyler St, Tempe, AZ 85287 USA
[7] Arizona State Univ, Biodesign Inst Ctr Sustainable Macromol Mat & Mfg, 501 E Tyler St, Tempe, AZ 85287 USA
[8] Arizona State Univ, Sch Biol & Hlth Syst Engn, Biomat Lab, Dept Biomed Engn, 427 E Tyler Mall, Tempe, AZ 85281 USA
[9] Coll Med, Dept Otolaryngol, Div Laryngol, 13400 E Shea Blvd, Scottsdale, AZ 85259 USA
[10] Mayo Clin, Arizona Ctr Regenerat Med, 13400 E Shea Blvd, Scottsdale, AZ 85259 USA
[11] Mayo Clin, Mayo Clin Coll Med, Div Gynecol Surg, Obstet & Gynecol, 13400 E Shea Blvd, Scottsdale, AZ 85259 USA
[12] Bar Ilan Univ, Bar Ilan Inst Nanotechnol & Adv Mat, Dept Engn, Neuroengn & Regenerat Lab, Bldg 1105, IL-52900 Ramat Gan, Israel
[13] Hesam Univ, CNRS, UMR 8006, Lab PIMM,Arts & M Tiers Inst Technol,CNAM, 151 Blvd Hop, F-75013 Paris, France
[14] San Diego State Univ, Dept Mech Engn, Addit Mfg & Adv Mat Lab, 5500 Campanile Dr, San Diego, CA 92182 USA
[15] Arizona State Univ, Ira A Fulton Sch Engn, Adv Mat Adv Mfg Lab AMAML, Dept Mfg Engn, 6075 Innovat Way W, Mesa, AZ 85212 USA
关键词
3D printing; alignment; composites; nanoparticles; polymers; MANUFACTURED CARBON-FIBER; POLYMER MATRIX COMPOSITES; BORON-NITRIDE PLATELETS; THERMAL-CONDUCTIVITY; MAGNETIC-FIELD; RECENT PROGRESS; NANOTUBE NANOCOMPOSITES; PREFERRED ORIENTATION; REINFORCED COMPOSITES; PARTICLE ALIGNMENT;
D O I
10.1002/smll.202100817
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
3D printing (additive manufacturing (AM)) has enormous potential for rapid tooling and mass production due to its design flexibility and significant reduction of the timeline from design to manufacturing. The current state-of-the-art in 3D printing focuses on material manufacturability and engineering applications. However, there still exists the bottleneck of low printing resolution and processing rates, especially when nanomaterials need tailorable orders at different scales. An interesting phenomenon is the preferential alignment of nanoparticles that enhance material properties. Therefore, this review emphasizes the landscape of nanoparticle alignment in the context of 3D printing. Herein, a brief overview of 3D printing is provided, followed by a comprehensive summary of the 3D printing-enabled nanoparticle alignment in well-established and in-house customized 3D printing mechanisms that can lead to selective deposition and preferential orientation of nanoparticles. Subsequently, it is listed that typical applications that utilized the properties of ordered nanoparticles (e.g., structural composites, heat conductors, chemo-resistive sensors, engineered surfaces, tissue scaffolds, and actuators based on structural and functional property improvement). This review's emphasis is on the particle alignment methodology and the performance of composites incorporating aligned nanoparticles. In the end, significant limitations of current 3D printing techniques are identified together with future perspectives.
引用
收藏
页数:57
相关论文
共 575 条
[1]   Conformal Printing of Electrically Small Antennas on Three-Dimensional Surfaces [J].
Adams, Jacob J. ;
Duoss, Eric B. ;
Malkowski, Thomas F. ;
Motala, Michael J. ;
Ahn, Bok Yeop ;
Nuzzo, Ralph G. ;
Bernhard, Jennifer T. ;
Lewis, Jennifer A. .
ADVANCED MATERIALS, 2011, 23 (11) :1335-1340
[2]  
Afrose M.F., 2016, PROG ADDIT MANUF, V1, P21, DOI [10.1007/s40964-015-0002-3, DOI 10.1007/S40964-015-0002-3]
[3]  
Agarwal BD., 2017, ANAL PERFORMANCE FIB
[4]   Electrohydrodynamic Direct Writing of Biomedical Polymers and Composites [J].
Ahmad, Zeeshan ;
Rasekh, Manoochehr ;
Edirisinghe, Mohan .
MACROMOLECULAR MATERIALS AND ENGINEERING, 2010, 295 (04) :315-319
[5]   Freeform fabrication by controlled droplet deposition of powder filled melts [J].
Ainsley, C ;
Reis, N ;
Derby, B .
JOURNAL OF MATERIALS SCIENCE, 2002, 37 (15) :3155-3161
[6]   Elastic properties of 3D printed fibre-reinforced structures [J].
Al Abadi, Haider ;
Huu-Tai Thai ;
Paton-Cole, Vidal ;
Patel, V. I. .
COMPOSITE STRUCTURES, 2018, 193 :8-18
[7]   Differential effect of magnetic alignment on additive manufacturing of magnetocaloric particles [J].
Al-Milaji, Karam N. ;
Gupta, Shalabh ;
Pecharsky, Vitalij K. ;
Barua, Radhika ;
Zhao, Hong ;
Hadimani, Ravi L. .
AIP ADVANCES, 2020, 10 (01)
[8]   Inkjet Printing of Magnetic Particles Toward Anisotropic Magnetic Properties [J].
Al-Milaji, Karam Nashwan ;
Hadimani, Ravi L. ;
Gupta, Shalabh ;
Pecharsky, Vitalij K. ;
Zhao, Hong .
SCIENTIFIC REPORTS, 2019, 9 (1)
[9]  
Amani A. M., 2017, CARBON NANOTUBES REC, P71
[10]  
[Anonymous], 2015, ASTM D5143 06 2015 E