A note on the stationary distribution of the stochastic chernostat model with general response functions

被引:38
作者
Wang, Liang [1 ,2 ]
Jiang, Daqing [1 ,3 ,4 ]
机构
[1] Northeast Normal Univ, Sch Math & Stat, Changchun 130024, Peoples R China
[2] McMaster Univ, Dept Math & Stat, Hamilton, ON L8S 4K1, Canada
[3] China Univ Petr East China, Coll Sci, Qingdao 266580, Peoples R China
[4] King Abdulaziz Univ, Nonlinear Anal & Appl Math NAAM Res Grp, Jeddah, Saudi Arabia
关键词
Chemostat; General response functions; Ergodicity; Stationary distribution; MATHEMATICAL-MODEL; GLOBAL DYNAMICS; CHEMOSTAT; COMPETITION;
D O I
10.1016/j.aml.2017.04.029
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A model of the chemostat involving stochastic perturbation is considered. Instead of assuming the familiar Monod kinetics for nutrient uptake, a general class of functions is used which includes both monotone and non-monotone uptake functions. Using the stochastic Lyapunov analysis method, under restrictions on the intensity of the noise, we show the existence of a stationary distribution and the ergodicity of the stochastic system. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:22 / 28
页数:7
相关论文
共 14 条
[11]   Competition in the chemostat: A stochastic multi-species model and its asymptotic behavior [J].
Xu, Chaoqun ;
Yuan, Sanling .
MATHEMATICAL BIOSCIENCES, 2016, 280 :1-9
[12]   An analogue of break-even concentration in a simple stochastic chemostat model [J].
Xu, Chaoqun ;
Yuan, Sanling .
APPLIED MATHEMATICS LETTERS, 2015, 48 :62-68
[13]   Stability analysis of a chemostat model with maintenance energy [J].
Zhang, Tonghua ;
Zhang, Tongqian ;
Meng, Xinzhu .
APPLIED MATHEMATICS LETTERS, 2017, 68 :1-7
[14]   Asymptotic properties of hybrid diffusion systems [J].
Zhu, C. ;
Yin, G. .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2007, 46 (04) :1155-1179