A note on the stationary distribution of the stochastic chernostat model with general response functions

被引:38
作者
Wang, Liang [1 ,2 ]
Jiang, Daqing [1 ,3 ,4 ]
机构
[1] Northeast Normal Univ, Sch Math & Stat, Changchun 130024, Peoples R China
[2] McMaster Univ, Dept Math & Stat, Hamilton, ON L8S 4K1, Canada
[3] China Univ Petr East China, Coll Sci, Qingdao 266580, Peoples R China
[4] King Abdulaziz Univ, Nonlinear Anal & Appl Math NAAM Res Grp, Jeddah, Saudi Arabia
关键词
Chemostat; General response functions; Ergodicity; Stationary distribution; MATHEMATICAL-MODEL; GLOBAL DYNAMICS; CHEMOSTAT; COMPETITION;
D O I
10.1016/j.aml.2017.04.029
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A model of the chemostat involving stochastic perturbation is considered. Instead of assuming the familiar Monod kinetics for nutrient uptake, a general class of functions is used which includes both monotone and non-monotone uptake functions. Using the stochastic Lyapunov analysis method, under restrictions on the intensity of the noise, we show the existence of a stationary distribution and the ergodicity of the stochastic system. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:22 / 28
页数:7
相关论文
共 14 条
[1]   A MATHEMATICAL-MODEL OF THE CHEMOSTAT WITH A GENERAL-CLASS OF FUNCTIONS DESCRIBING NUTRIENT-UPTAKE [J].
BUTLER, GJ ;
WOLKOWICZ, GSK .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1985, 45 (01) :138-151
[2]   Stochastic modeling of the chemostat [J].
Campillo, F. ;
Joannides, M. ;
Larramendy-Valverde, I. .
ECOLOGICAL MODELLING, 2011, 222 (15) :2676-2689
[3]  
Gard T. C., 1988, INTRO STOCHASTIC DIF
[4]   Exclusion and persistence in deterministic and stochastic chemostat models [J].
Imhof, L ;
Walcher, S .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2005, 217 (01) :26-53
[5]  
Khasminskii R., 1980, STOCHASTIC STABILITY
[6]   GLOBAL DYNAMICS ANALYSIS OF A NONLINEAR IMPULSIVE STOCHASTIC CHEMOSTAT SYSTEM IN A POLLUTED ENVIRONMENT [J].
Meng, Xinzhu ;
Wang, Lu ;
Zhang, Tonghua .
JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2016, 6 (03) :865-875
[7]  
Strang G., 1988, LINEAR ALGEBRA ITS A
[8]  
Wang L, 2016, COMMUN NONLINEAR SCI, V37, P1, DOI [10.1016/j.cnsns.2016.01.002, 10.7687/J.ISSN1003-8868.2016.05.001]
[9]   Optimal biogas production in a model for anaerobic digestion [J].
Weedermann, Marion ;
Wolkowicz, Gail S. K. ;
Sasara, Joanna .
NONLINEAR DYNAMICS, 2015, 81 (03) :1097-1112
[10]   GLOBAL DYNAMICS OF A MATHEMATICAL-MODEL OF COMPETITION IN THE CHEMOSTAT - GENERAL RESPONSE FUNCTIONS AND DIFFERENTIAL DEATH RATES [J].
WOLKOWICZ, GSK ;
LU, ZQ .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1992, 52 (01) :222-233