O-minimal hybrid systems

被引:159
作者
Lafferriere, G [1 ]
Pappas, GJ
Sastry, S
机构
[1] Portland State Univ, Dept Math Sci, Portland, OR 97207 USA
[2] Univ Calif Berkeley, Dept Elect Engn & Comp Sci, Berkeley, CA 94720 USA
关键词
hybrid systems; bisimulations; model theory; o-minimality; decidability;
D O I
10.1007/PL00009858
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
An important approach to decidability questions for verification algorithms of hybrid systems has been the construction of a bisimulation. Bisimulations are finite state quotients whose reachability properties are equivalent to those of the original infinite state hybrid system. In this paper we introduce the notion of o-minimal hybrid systems, which are initialized hybrid systems whose relevant sets and flows are definable in an o-minimal theory. We prove that o-minimal hybrid systems always admit finite bisimulations. We then present specific examples of hybrid systems with complex continuous dynamics for which finite bisimulations exist.
引用
收藏
页码:1 / 21
页数:21
相关论文
共 35 条
[1]   A THEORY OF TIMED AUTOMATA [J].
ALUR, R ;
DILL, DL .
THEORETICAL COMPUTER SCIENCE, 1994, 126 (02) :183-235
[2]   THE ALGORITHMIC ANALYSIS OF HYBRID SYSTEMS [J].
ALUR, R ;
COURCOUBETIS, C ;
HALBWACHS, N ;
HENZINGER, TA ;
HO, PH ;
NICOLLIN, X ;
OLIVERO, A ;
SIFAKIS, J ;
YOVINE, S .
THEORETICAL COMPUTER SCIENCE, 1995, 138 (01) :3-34
[3]  
ALUR R, 1996, LECT NOTES COMPUTER, V1066
[4]  
Antsaklis P. J., 1993, Hybrid Systems, P366
[5]  
ANTSAKLIS PJ, 1995, LECT NOTES COMPUTER, V999
[6]  
ANTSAKLIS PJ, 1997, LECT NOTES COMPUTER, V1273
[7]  
BIERSTONE E, 1988, PUBL MATH-PARIS, V67, P5
[8]   Hierarchical hybrid control systems: A lattice theoretic formulation [J].
Caines, PE ;
Wei, YJ .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1998, 43 (04) :501-508
[9]   THE HIERARCHICAL LATTICES OF A FINITE MACHINE [J].
CAINES, PE ;
WEI, YJ .
SYSTEMS & CONTROL LETTERS, 1995, 25 (04) :257-263
[10]  
CERANS K, 1996, LECT NOTES COMPUTER, V1066, P389