Double-hump solitons in fractional dimensions with a PT-symmetric potential

被引:83
作者
Dong, Liangwei [1 ]
Huang, Changming [2 ]
机构
[1] Shaanxi Univ Sci & Technol, Dept Phys, Xian 710021, Shaanxi, Peoples R China
[2] Changzhi Univ, Dept Elect Informat & Phys, Changzhi 046011, Shanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
SCHRODINGER-EQUATION; PROPAGATION DYNAMICS; REAL SPECTRA; OPTICS; BEAMS;
D O I
10.1364/OE.26.010509
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We investigate the properties of double-htxnlp solitons supported by the nonlinear Schrodinger equation featuring a combination of parity-time symmetry and fractional-order diffraction effect. Two classes of nonlinear states, i.e., out-of-phase and in-phase solitons are found. Each class contains two families of solitons originating from the same linear mode in both focusing and defocusing nonlinear Kerr media. The critical phase-transition point increases monotonously with increasing Levy index. For strong gain and loss, out-of-phase solitons in focusing media are stable in a wide parameter window and are almost completely unstable in media with a defocusing nonlinearity. The stability of in-phase solitons is opposite to that of out-of-phase solitons. In-phase solitons in defocusing media are stable in their entire existence domains provided that the gain-loss strength is below a critical value. Meanwhile, the stability region shrinks with the decrease of Levy index. We, thus, put forward the first example of spatial solitons in fractional dimensions with a parity-time symmetry. (C) 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement.
引用
收藏
页码:10509 / 10518
页数:10
相关论文
共 37 条
[1]   Solitons in PT-symmetric nonlinear lattices [J].
Abdullaev, Fatkhulla Kh. ;
Kartashov, Yaroslav V. ;
Konotop, Vladimir V. ;
Zezyulin, Dmitry A. .
PHYSICAL REVIEW A, 2011, 83 (04)
[2]   Complex extension of quantum mechanics [J].
Bender, CM ;
Brody, DC ;
Jones, HF .
PHYSICAL REVIEW LETTERS, 2002, 89 (27)
[3]   Real spectra in non-Hermitian Hamiltonians having PT symmetry [J].
Bender, CM ;
Boettcher, S .
PHYSICAL REVIEW LETTERS, 1998, 80 (24) :5243-5246
[4]   Observation of PT-Symmetry Breaking in Complex Optical Potentials [J].
Guo, A. ;
Salamo, G. J. ;
Duchesne, D. ;
Morandotti, R. ;
Volatier-Ravat, M. ;
Aimez, V. ;
Siviloglou, G. A. ;
Christodoulides, D. N. .
PHYSICAL REVIEW LETTERS, 2009, 103 (09)
[5]   Existence and stability of standing waves for nonlinear fractional Schroumldinger equations [J].
Guo, Boling ;
Huang, Daiwen .
JOURNAL OF MATHEMATICAL PHYSICS, 2012, 53 (08)
[6]   Lattice solitons in PT-symmetric mixed linear-nonlinear optical lattices [J].
He, Yingji ;
Zhu, Xing ;
Mihalache, Dumitru ;
Liu, Jinglin ;
Chen, Zhanxu .
PHYSICAL REVIEW A, 2012, 85 (01)
[7]   Beam propagation management in a fractional Schrodinger equation [J].
Huang, Changming ;
Dong, Liangwei .
SCIENTIFIC REPORTS, 2017, 7
[8]   Gap solitons in the nonlinear fractional Schrodinger equation with an optical lattice [J].
Huang, Changming ;
Dong, Liangwei .
OPTICS LETTERS, 2016, 41 (24) :5636-5639
[9]   PT symmetry in optics beyond the paraxial approximation [J].
Huang, Changming ;
Ye, Fangwei ;
Kartashov, Yaroslav V. ;
Malomed, Boris A. ;
Chen, Xianfeng .
OPTICS LETTERS, 2014, 39 (18) :5443-5446
[10]   Nonlocal gap solitons in PT-symmetric periodic potentials with defocusing nonlinearity [J].
Jisha, Chandroth P. ;
Alberucci, Alessandro ;
Brazhnyi, Valeriy A. ;
Assanto, Gaetano .
PHYSICAL REVIEW A, 2014, 89 (01)