Strain-Driven and Layer-Number-Dependent Crossover of Growth Mode in van der Waals Heterostructures: 2D/2D Layer-By-Layer Horizontal Epitaxy to 2D/3D Vertical Reorientation

被引:35
|
作者
Choudhary, Nitin [1 ]
Chung, Hee-Suk [2 ]
Kim, Jung Han [1 ]
Noh, Chanwoo [3 ]
Islam, Md Ashraful [1 ,4 ]
Oh, Kyu Hwan [5 ]
Coffey, Kevin [6 ,7 ]
Jung, YounJoon [3 ,4 ,6 ]
Jung, Yeonwoong [1 ]
机构
[1] Univ Cent Florida, NanoSci Technol Ctr, Orlando, FL 32826 USA
[2] Korea Basic Sci Inst, Analyt Res Div, Jeonju 54907, South Korea
[3] Seoul Natl Univ, Dept Chem, Seoul 08826, South Korea
[4] Univ Cent Florida, Dept Elect & Comp Engn, Orlando, FL 32826 USA
[5] Seoul Natl Univ, Dept Mat Sci & Engn, Seoul 08826, South Korea
[6] Univ Cent Florida, Dept Mat Sci & Engn, Orlando, FL 32826 USA
[7] Univ Cent Florida, Dept Phys, Orlando, FL 32826 USA
来源
ADVANCED MATERIALS INTERFACES | 2018年 / 5卷 / 14期
基金
新加坡国家研究基金会; 美国国家科学基金会;
关键词
2D van der Waals heterostructure; layer-by-layer growth; MoS2; WS2; van der Waals epitaxy; vertical 2D layer; VAPOR-DEPOSITION GROWTH; REACTIVE FORCE-FIELD; HYDROGEN EVOLUTION; MOS2; TRANSITION; GRAPHENE; REAXFF; FILMS; DICHALCOGENIDES; NANOSTRUCTURES;
D O I
10.1002/admi.201800382
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Heterogeneously integrated 2D van der Waals (vdW) solids composed of compositionally distinct atomic layers are envisioned to exhibit exotic electrical/optical properties unattainable with their monocomponent counterparts. However, the underlying principle for their morphology-controlled chemical vapor deposition (CVD) growth and its associated growth variables have not been clarified, leaving their projected technological opportunities far from being realized. Herein, by employing tungsten trioxide (WO3) nanowires as a model system that uniquely enables the detailed atomic-scale inspections of 2D/2D interfaces, the CVD growth mechanism of 2D molybdenum/tungsten disulfide vdW vertical stacks is studied. By employing extensive transmission electron microscopy (TEM) characterization, an intriguing growth mode transition is identified in these materials, i.e., 2D/2D layer-by-layer horizontal epitaxy to 2D/3D vertical layer reorientation, and it is confirmed that it is driven by varying 2D layer numbers. Corroborating molecular dynamics simulations clarify that the internal strain accumulated during the course of 2D layers growth dictates the final growth mode, further supported by TEM strain map analysis. This study not only sheds a new insight on better understanding the growth principles for 2D vdW heterostructures but also offers important technical guidance on tailoring their functionalities toward exploring 2D/2D heterojunction devices.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] Band engineering in a van der Waals heterostructure using a 2D polar material and a capping layer
    Cho, Sung Beom
    Chung, Yong-Chae
    SCIENTIFIC REPORTS, 2016, 6
  • [32] Electronic structure of 2D quaternary materials and of their van der Waals heterostructures
    Lazaar, Koussai
    Gueddida, Saber
    Abboud, Ali
    Said, Moncef
    Rocca, Dario
    Lebegue, Sebastien
    JOURNAL OF APPLIED PHYSICS, 2021, 130 (06)
  • [33] 2D transition metal chalcogenides and van der Waals heterostructures: Fundamental aspects of their electrochemistry
    Dryfe, Robert A. W.
    CURRENT OPINION IN ELECTROCHEMISTRY, 2019, 13 : 119 - 124
  • [34] Epitaxy of 2D chalcogenides: Aspects and consequences of weak van der Waals coupling
    Mortelmans, Wouter
    De Gendt, Stefan
    Heyns, Marc
    Merckling, Clement
    APPLIED MATERIALS TODAY, 2021, 22
  • [35] Elastic behavior of Bi2Se3 2D nanosheets grown by van der Waals epitaxy
    Yan, Haoming
    Vajner, Cooper
    Kuhlman, Michael
    Guo, Lingling
    Li, Lin
    Araujo, Paulo T.
    Wang, Hung-Ta
    APPLIED PHYSICS LETTERS, 2016, 109 (03)
  • [36] Kinetically Controlled Layer-by-Layer Stacking of Metal Oxide 2D Nanosheets
    Lim, Joohyun
    Jin, Xiaoyan
    Jo, Yun Kyung
    Lee, Seul
    Hwang, Seong-Ju
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2017, 56 (25) : 7093 - 7096
  • [37] Vertical 2D/3D Semiconductor Heterostructures Based on Epitaxial Molybdenum Disulfide and Gallium Nitride
    Ruzmetov, Dmitry
    Zhang, Kehao
    Stan, Gheorghe
    Kalanyan, Berc
    Bhimanapati, Ganesh R.
    Eichfeld, Sarah M.
    Burke, Robert A.
    Shah, Pankaj B.
    O'Regan, Terrance P.
    Crowne, Frank J.
    Birdwell, A. Glen
    Robinson, Joshua A.
    Davydov, Albert V.
    Ivanov, Tony G.
    ACS NANO, 2016, 10 (03) : 3580 - 3588
  • [38] Epitaxial 2D MoSe2 (HfSe2) Semiconductor/2D TaSe2 Metal van der Waals Heterostructures
    Tsoutsou, Dimitra
    Aretouli, Kleopatra E.
    Tsipas, Polychronis
    Marquez-Velasco, Jose
    Xenogiannopoulou, Evangelia
    Kelaidis, Nikolaos
    Giamini, Sigiava Aminalragia
    Dimoulas, Athanasios
    ACS APPLIED MATERIALS & INTERFACES, 2016, 8 (03) : 1836 - 1841
  • [39] Promoted photocarriers separation by straining in 2D/2D van der Waals heterostructures for high-efficiency visible-light photocatalysis
    Wang, Yong
    Zeng, Chengxin
    Zhang, Yu
    Su, Ran
    Yang, Dingyi
    Wang, Zhaokun
    Wu, Yizhang
    Pan, Hongzhe
    Zhu, Weidong
    Hu, Wen
    Liu, Hong
    Yang, Rusen
    MATERIALS TODAY PHYSICS, 2022, 22
  • [40] Rapid Layer-Number Identification of MoS2 Nanosheet in MoS2/ MoO2 Conformal Heterostructures by Color: Implications for the Fabrication of 2D/3D Heterostructures
    Wu, Hongrong
    Li, Na
    Tong, Pinsen
    Yu, Peishi
    Zhao, Junhua
    ACS APPLIED NANO MATERIALS, 2022, 5 (08) : 11280 - 11288