Strain-Driven and Layer-Number-Dependent Crossover of Growth Mode in van der Waals Heterostructures: 2D/2D Layer-By-Layer Horizontal Epitaxy to 2D/3D Vertical Reorientation

被引:35
|
作者
Choudhary, Nitin [1 ]
Chung, Hee-Suk [2 ]
Kim, Jung Han [1 ]
Noh, Chanwoo [3 ]
Islam, Md Ashraful [1 ,4 ]
Oh, Kyu Hwan [5 ]
Coffey, Kevin [6 ,7 ]
Jung, YounJoon [3 ,4 ,6 ]
Jung, Yeonwoong [1 ]
机构
[1] Univ Cent Florida, NanoSci Technol Ctr, Orlando, FL 32826 USA
[2] Korea Basic Sci Inst, Analyt Res Div, Jeonju 54907, South Korea
[3] Seoul Natl Univ, Dept Chem, Seoul 08826, South Korea
[4] Univ Cent Florida, Dept Elect & Comp Engn, Orlando, FL 32826 USA
[5] Seoul Natl Univ, Dept Mat Sci & Engn, Seoul 08826, South Korea
[6] Univ Cent Florida, Dept Mat Sci & Engn, Orlando, FL 32826 USA
[7] Univ Cent Florida, Dept Phys, Orlando, FL 32826 USA
来源
ADVANCED MATERIALS INTERFACES | 2018年 / 5卷 / 14期
基金
新加坡国家研究基金会; 美国国家科学基金会;
关键词
2D van der Waals heterostructure; layer-by-layer growth; MoS2; WS2; van der Waals epitaxy; vertical 2D layer; VAPOR-DEPOSITION GROWTH; REACTIVE FORCE-FIELD; HYDROGEN EVOLUTION; MOS2; TRANSITION; GRAPHENE; REAXFF; FILMS; DICHALCOGENIDES; NANOSTRUCTURES;
D O I
10.1002/admi.201800382
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Heterogeneously integrated 2D van der Waals (vdW) solids composed of compositionally distinct atomic layers are envisioned to exhibit exotic electrical/optical properties unattainable with their monocomponent counterparts. However, the underlying principle for their morphology-controlled chemical vapor deposition (CVD) growth and its associated growth variables have not been clarified, leaving their projected technological opportunities far from being realized. Herein, by employing tungsten trioxide (WO3) nanowires as a model system that uniquely enables the detailed atomic-scale inspections of 2D/2D interfaces, the CVD growth mechanism of 2D molybdenum/tungsten disulfide vdW vertical stacks is studied. By employing extensive transmission electron microscopy (TEM) characterization, an intriguing growth mode transition is identified in these materials, i.e., 2D/2D layer-by-layer horizontal epitaxy to 2D/3D vertical layer reorientation, and it is confirmed that it is driven by varying 2D layer numbers. Corroborating molecular dynamics simulations clarify that the internal strain accumulated during the course of 2D layers growth dictates the final growth mode, further supported by TEM strain map analysis. This study not only sheds a new insight on better understanding the growth principles for 2D vdW heterostructures but also offers important technical guidance on tailoring their functionalities toward exploring 2D/2D heterojunction devices.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Moire physics in twisted van der Waals heterostructures of 2D materials
    Behura, Sanjay K.
    Miranda, Alexis
    Nayak, Sasmita
    Johnson, Kayleigh
    Das, Priyanka
    Pradhan, Nihar R.
    EMERGENT MATERIALS, 2021, 4 (04) : 813 - 826
  • [22] van der Waals Epitaxy, Superlubricity, and Polarization of the 2D Ferroelectric SnS
    Moody, Michael J.
    Paul, Joshua T.
    Smeets, Paul J. M.
    dos Reis, Roberto
    Kim, Joon-Seok
    Mead, Christopher E.
    Gish, Jonathan Tyler
    Hersam, Mark C.
    Chan, Maria K. Y.
    Lauhon, Lincoln J.
    ACS APPLIED MATERIALS & INTERFACES, 2023, 15 (48) : 56150 - 56157
  • [23] Centimeter-scale Green Integration of Layer-by-Layer 2D TMD vdW Heterostructures on Arbitrary Substrates by Water-Assisted Layer Transfer
    Kim, Jung Han
    Ko, Tae-Jun
    Okogbue, Emmanuel
    Han, Sang Sub
    Shawkat, Mashiyat Sumaiya
    Kaium, Md Golam
    Oh, Kyu Hwan
    Chung, Hee-Suk
    Jung, Yeonwoong
    SCIENTIFIC REPORTS, 2019, 9 (1)
  • [24] Phase Variations and Layer Epitaxy of 2D PdSe2 Grown on 2D Monolayers by Direct Selenization of Molecular Pd Precursors
    Tai, Kuo-Lun
    Chen, Jun
    Wen, Yi
    Park, Hyoju
    Zhang, Qianyang
    Lu, Yang
    Chang, Ren-Jie
    Tang, Peng
    Allen, Christopher S.
    Wu, Wen-Wei
    Warner, Jamie H.
    ACS NANO, 2020, 14 (09) : 11677 - 11690
  • [25] Gate-Tunable Semiconductor Heterojunctions from 2D/3D van der Waals Interfaces
    Miao, Jinshui
    Liu, Xiwen
    Jo, Kiyoung
    He, Kang
    Saxena, Ravindra
    Song, Baokun
    Zhang, Huiqin
    He, Jiale
    Han, Myung-Geun
    Hu, Weida
    Jariwala, Deep
    NANO LETTERS, 2020, 20 (04) : 2907 - 2915
  • [26] Atomic Layer Deposition on 2D Materials
    Kim, Hyun Gu
    Leek, Han-Bo-Ram
    CHEMISTRY OF MATERIALS, 2017, 29 (09) : 3809 - 3826
  • [27] Van der Waals polarity-engineered 3D integration of 2D complementary logic
    Guo, Yimeng
    Li, Jiangxu
    Zhan, Xuepeng
    Wang, Chunwen
    Li, Min
    Zhang, Biao
    Wang, Zirui
    Liu, Yueyang
    Yang, Kaining
    Wang, Hai
    Li, Wanying
    Gu, Pingfan
    Luo, Zhaoping
    Liu, Yingjia
    Liu, Peitao
    Chen, Bo
    Watanabe, Kenji
    Taniguchi, Takashi
    Chen, Xing-Qiu
    Qin, Chengbing
    Chen, Jiezhi
    Sun, Dongming
    Zhang, Jing
    Wang, Runsheng
    Liu, Jianpeng
    Ye, Yu
    Li, Xiuyan
    Hou, Yanglong
    Zhou, Wu
    Wang, Hanwen
    Han, Zheng
    NATURE, 2024, : 346 - 352
  • [28] Superlattices based on van der Waals 2D materials
    Ryu, Yu Kyoung
    Frisenda, Riccardo
    Castellanos-Gomez, Andres
    CHEMICAL COMMUNICATIONS, 2019, 55 (77) : 11498 - 11510
  • [29] Physical vapor deposition of 2D Van der Waals materials: a review
    Muratore, Christopher
    Voevodin, Andrey A.
    Glavin, Nicholas R.
    THIN SOLID FILMS, 2019, 688
  • [30] Layer-engineered atomic-scale spalling of 2D van der Waals crystals
    Moon, Ji-Yun
    Kim, Do-Hoon
    Kim, Seung-Il
    Hwang, Hyun-Sik
    Choi, Jun-Hui
    Hyeong, Seok-Ki
    Ghods, Soheil
    Park, Hyeong Gi
    Kim, Eui-Tae
    Bae, Sukang
    Lee, Seoung-Ki
    Son, Seok-Kyun
    Lee, Jae-Hyun
    MATTER, 2022, 5 (11) : 3935 - 3946