Multi-objective retinal vessel localization using flower pollination search algorithm with pattern search

被引:26
作者
Emary, E. [1 ,2 ]
Zawbaa, Hossam M. [3 ,4 ]
Hassanien, Aboul Ella [1 ,2 ]
Parv, B. [4 ]
机构
[1] Cairo Univ, Fac Comp & Informat, Giza, Egypt
[2] Sci Res Grp Egypt SRGE, Cairo, Egypt
[3] Beni Suef Univ, Fac Comp & Informat, AAA, Bani Suwayf, Egypt
[4] Babes Bolyai Univ, Fac Math & Comp Sci, Mihail Kogalniceanu 1, Cluj Napoca 400084, Romania
关键词
Flower pollination search algorithm; Pattern search; Multi-objective retinal vessel localization; Bio-inspired optimization; Evolutionary computation; FUZZY C-MEANS; SEGMENTATION; IMAGES; OPTIMIZATION; LEVEL;
D O I
10.1007/s11634-016-0257-7
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper presents a multi-objective retinal blood vessels localization approach based on flower pollination search algorithm (FPSA) and pattern search (PS) algorithm. FPSA is a new evolutionary algorithm based on the flower pollination process of flowering plants. The proposed multi-objective fitness function uses the flower pollination search algorithm (FPSA) that searches for the optimal clustering of the given retinal image into compact clusters under some constraints. Pattern search (PS) as local search method is then applied to further enhance the segmentation results using another objective function based on shape features. The proposed approach for retinal blood vessels localization is applied on public database namely DRIVE data set. Results demonstrate that the performance of the proposed approach is comparable with state of the art techniques in terms of accuracy, sensitivity, and specificity with many extendable features.
引用
收藏
页码:611 / 627
页数:17
相关论文
共 29 条
[1]  
Bezdek J. C., 1981, Pattern recognition with fuzzy objective function algorithms
[2]   Automatic model-based tracing algorithm for vessel segmentation and diameter estimation [J].
Delibasis, Konstantinos K. ;
Kechriniotis, Aristides I. ;
Tsonos, C. ;
Assimakis, Nicholas .
COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2010, 100 (02) :108-122
[3]   Multi-objective optimization for clustering 3-way gene expression data [J].
Dembele, Doulaye .
ADVANCES IN DATA ANALYSIS AND CLASSIFICATION, 2008, 2 (03) :211-225
[4]  
Emary E, 2014, INT JOINT C NEUR NET
[5]  
Emary E, 2014, P IEEE INT JOINT C N
[6]  
Emary E, 2014, IEEE IJCNN, P1001, DOI 10.1109/IJCNN.2014.6889856
[7]  
Foracchia M, 2011, 2 INT WORKSH COMP AS
[8]   An approach to localize the retinal blood vessels using bit planes and centerline detection [J].
Fraz, M. M. ;
Barman, S. A. ;
Remagnino, P. ;
Hoppe, A. ;
Basit, A. ;
Uyyanonvara, B. ;
Rudnicka, A. R. ;
Owen, C. G. .
COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2012, 108 (02) :600-616
[9]   Blood vessel segmentation methodologies in retinal images - A survey [J].
Fraz, M. M. ;
Remagnino, P. ;
Hoppe, A. ;
Uyyanonvara, B. ;
Rudnicka, A. R. ;
Owen, C. G. ;
Barman, S. A. .
COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2012, 108 (01) :407-433
[10]   Retinal blood vessel localization approach based on bee colony swarm optimization, fuzzy c-means and pattern search [J].
Hassanien, Aboul Ella ;
Emary, E. ;
Zawbaa, Hossam M. .
JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2015, 31 :186-196