Existence and uniqueness theorems for the full three-dimensional Ericksen-Leslie system

被引:3
作者
Chechkin, Gregory A. [1 ]
Ratiu, Tudor S. [2 ,3 ]
Romanov, Maxim S. [1 ]
Samokhin, Vyacheslav N. [4 ]
机构
[1] Moscow MV Lomonosov State Univ, Fac Mech & Math, Dept Differential Equat, Moscow 119991, Russia
[2] Shanghai Jiao Tong Univ, Sch Math, 800 Dongchuan Rd, Shanghai 200240, Peoples R China
[3] Ecole Polytech Fed Lausanne, Sect Math, CH-1015 Lausanne, Switzerland
[4] Moscow State Univ Printing Arts, 2A Pryanishnikova Ul, Moscow 127550, Russia
基金
瑞士国家科学基金会;
关键词
Liquid crystal; Ericksen-Leslie equations; nematodynamics; existence and uniqueness; director field; speed of propagation; NEMATIC LIQUID-CRYSTALS; CONSTITUTIVE EQUATIONS; ANISOTROPIC FLUIDS; CONTINUUM THEORY; FLOW; CONFIGURATIONS; FORCE; MODEL;
D O I
10.1142/S0218202517500178
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the three-dimensional Ericksen-Leslie equations for the nematodynamics of liquid crystals. We prove short time existence and uniqueness of strong solutions for the initial value problem for the periodic case and in bounded domains with both Dirichlet- and Neumann-type boundary conditions.
引用
收藏
页码:807 / 843
页数:37
相关论文
共 52 条
[1]   The interplay between boundary conditions and flow geometries in shear banding: Hysteresis, band configurations, and surface transitions [J].
Adams, J. M. ;
Fielding, S. M. ;
Olmsted, P. D. .
JOURNAL OF NON-NEWTONIAN FLUID MECHANICS, 2008, 151 (1-3) :101-118
[2]  
[Anonymous], 2003, SOBOLEV SPACES
[3]  
[Anonymous], 1968, LINEAR QUASILINEAR E
[4]   On a 3D isothermal model for nematic liquid crystals accounting for stretching terms [J].
Cavaterra, Cecilia ;
Rocca, Elisabetta .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2013, 64 (01) :69-82
[5]  
Chandrasekhar S., 1992, LIQUID CRYSTALS
[6]  
CHECHKIN GA, 2012, VESTN MOSK GOS U PEC, V12, P139
[7]   Existence and Uniqueness Theorems for the Two-Dimensional Ericksen-Leslie System [J].
Chechkin, Gregory A. ;
Ratiu, Tudor S. ;
Romanov, Maxim S. ;
Samokhin, Vyacheslav N. .
JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2016, 18 (03) :571-589
[8]   Nematodynamics and random homogenization [J].
Chechkin, Gregory A. ;
Chechkina, Tatiana P. ;
Ratiu, Tudor S. ;
Romanov, Maksim S. .
APPLICABLE ANALYSIS, 2016, 95 (10) :2243-2253
[9]   On unique solvability of the full three-dimensional Ericksen-Leslie system [J].
Chechkin, Gregory A. ;
Ratiu, Tudor S. ;
Romanov, Maxim S. ;
Samokhin, Vyacheslav N. .
COMPTES RENDUS MECANIQUE, 2016, 344 (07) :459-463
[10]   EXISTENCE OF REGULAR SOLUTIONS TO AN ERICKSEN-LESLIE MODEL OF THE LIQUID CRYSTAL SYSTEM [J].
Dai, Mimi .
COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2015, 13 (07) :1711-1740