Projective modules on Fock spaces

被引:0
作者
Arias, A [1 ]
机构
[1] Univ Denver, Dept Math, Denver, CO 80208 USA
关键词
Fock spaces; Hilbert modules; Commutant Lifting Theorem; projective modules; projective resolution;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A Hilbert module over the free algebra generated by n noncommutative variables is a Hilbert space R with n bounded linear operators. In this paper we use Hilbert module language to study the semi-invariant subspaces of a family of weighted Fock spaces and their quotients that includes the Full Fock space, the symmetric Fock space, the Dirichlet algebra, and the reproducing kernel Hilbert spaces with a Nevanlinna-Pick kernel. We prove a commutant lifting theorem, obtain explicit resolutions and characterize the strongly orthogonally projective subquotients of each algebra. We use the symbols associated with the commutant lifting theorem to prove that two minimal projective resolutions are unitarily equivalent.
引用
收藏
页码:139 / 172
页数:34
相关论文
共 33 条
[1]   NEVANLINNA-PICK INTERPOLATION ON SOBOLEV SPACE [J].
AGLER, J .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1990, 108 (02) :341-351
[2]   Complete Nevanlinna-Pick kernels [J].
Agler, J ;
McCarthy, JE .
JOURNAL OF FUNCTIONAL ANALYSIS, 2000, 175 (01) :111-124
[3]   FACTORIZATION AND REFLEXIVITY ON FOCK SPACES [J].
ARIAS, A ;
POPESCU, G .
INTEGRAL EQUATIONS AND OPERATOR THEORY, 1995, 23 (03) :268-286
[4]  
Arias A, 1999, HOUSTON J MATH, V25, P79
[5]  
ARIAS A, 2000, ISRAEL J MATH, V115, P321
[6]   Subalgebras of C*-algebras III: Multivariable operator theory [J].
Arveson, W .
ACTA MATHEMATICA, 1998, 181 (02) :159-228
[7]  
Arveson W, 2000, J REINE ANGEW MATH, V522, P173
[8]   MODELS FOR N-TUPLES OF NONCOMMUTING OPERATORS [J].
BUNCE, JW .
JOURNAL OF FUNCTIONAL ANALYSIS, 1984, 57 (01) :21-30
[9]   Projective modules and Hilbert spaces with a Nevanlinna-Pick kernel [J].
Clancy, RS ;
McCullough, S .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1998, 126 (11) :3299-3305
[10]   Nevanlinna-Pick interpolation for non-commutative analytic Toeplitz algebras [J].
Davidson, KR ;
Pitts, DR .
INTEGRAL EQUATIONS AND OPERATOR THEORY, 1998, 31 (03) :321-337