Genome-wide survey and expression analyses of the GRAS gene family in Brassica napus reveals their roles in root development and stress response

被引:38
|
作者
Guo, Pengcheng [1 ,2 ]
Wen, Jing [1 ,2 ]
Yang, Jin [1 ,2 ]
Ke, Yunzhuo [1 ,2 ]
Wang, Mangmang [1 ,2 ]
Liu, Mingming [1 ,2 ]
Ran, Feng [1 ,2 ]
Wu, Yunwen [1 ,2 ]
Li, Pengfeng [1 ,2 ]
Li, Jiana [1 ,2 ]
Du, Hai [1 ,2 ]
机构
[1] Southwest Univ, Coll Agron & Biotechnol, Chongqing 400715, Peoples R China
[2] Southwest Univ, Acad Agr Sci, Chongqing 400715, Peoples R China
基金
中国国家自然科学基金;
关键词
Expression profile; GRAS family; Phylogenetic analysis; Root; Stress response; TRANSCRIPTION FACTORS; SIGNAL-TRANSDUCTION; MOLECULAR ANALYSIS; SEED-GERMINATION; ARABIDOPSIS; PROTEINS; SCARECROW; DIVERSIFICATION; EVOLUTION; DOMAIN;
D O I
10.1007/s00425-019-03199-y
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Main conclusion Genome-wide identification, classification, expression analyses, and functional characterization of GRAS genes in oil crop, Brassica napus, indicate their importance in root development and stress response. GRAS proteins are a plant-specific transcription factor gene family involved in tissues development and stress response. We classified 87 putative GRAS genes in the Brassica napus genome (BnGRASs) into 13 subfamilies by phylogenetic analysis. The C-terminal GRAS domains of Brassica napus (B. napus) proteins were less conserved among subfamilies, but were conserved within each subfamily. A series of analyses revealed that 89.7% of the BnGRASs did not have intron insertions, and 24 specific-motifs were found at the N-terminal. A highly conserved microRNA 171 (miRNA171) target was observed specifically in the HAM subfamily across land plants. A total of 868 pairs of interaction proteins were predicted, the primary of which were transcription factors involved in transcriptional regulation and signal transduction. Integrated comparative analysis of GRAS genes across 26 species of algae, mosses, ferns, gymnosperms, and angiosperms revealed that this gene family originated in early mosses and was classified into 19 subfamilies, 14 of which may have originated prior to bryophyte evolution. RNA-Seq analysis demonstrated that most BnGRASs were widely expressed in different tissues/organs at different stages in B. napus, and 24 BnGRASs were highly/specifically expressed in roots. Results from a qRT-PCR analysis suggested that two BnGRASs belonging to SCR and LISCL subfamilies potentially have important roles in the stress response of roots.
引用
收藏
页码:1051 / 1072
页数:22
相关论文
共 50 条
  • [41] Genome-Wide Identification and Expression Analyses of Aquaporin Gene Family during Development and Abiotic Stress in Banana
    Hu, Wei
    Hou, Xiaowan
    Huang, Chao
    Yan, Yan
    Tie, Weiwei
    Ding, Zehong
    Wei, Yunxie
    Liu, Juhua
    Miao, Hongxia
    Lu, Zhiwei
    Li, Meiying
    Xu, Biyu
    Jin, Zhiqiang
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2015, 16 (08) : 19728 - 19751
  • [42] Genome-wide identification and expression analysis of GRAS gene family in Eucalyptus grandis
    Lu, Haifei
    Xu, Jianmin
    Li, Guangyou
    Zhong, Tailin
    Chen, Danwei
    Lv, Jiabin
    BMC PLANT BIOLOGY, 2024, 24 (01):
  • [43] Genome-Wide Analysis of the Lateral Organ Boundaries Domain Gene Family in Brassica Napus
    Xie, Tao
    Zeng, Lei
    Chen, Xin
    Rong, Hao
    Wu, Jingjing
    Batley, Jacqueline
    Jiang, Jinjin
    Wang, Youping
    GENES, 2020, 11 (03)
  • [44] Genome-wide identification, phylogeny and expression analysis of GRAS gene family in tomato
    Huang, Wei
    Xian, Zhiqiang
    Kang, Xia
    Tang, Ning
    Li, Zhengguo
    BMC PLANT BIOLOGY, 2015, 15
  • [45] Genome-wide identification, phylogeny and expression analysis of GRAS gene family in tomato
    Wei Huang
    Zhiqiang Xian
    Xia Kang
    Ning Tang
    Zhengguo Li
    BMC Plant Biology, 15
  • [46] Genome-wide identification and expression analysis of the GRAS gene family in Dendrobium chrysotoxum
    Zhao, Xuewei
    Liu, Ding-Kun
    Wang, Qian-Qian
    Ke, Shijie
    Li, Yuanyuan
    Zhang, Diyang
    Zheng, Qinyao
    Zhang, Cuili
    Liu, Zhong-Jian
    Lan, Siren
    FRONTIERS IN PLANT SCIENCE, 2022, 13
  • [47] Genome-Wide Identification and Expression Analysis of the GRAS Gene Family and Their Responses to Heat Stress in Cymbidium goeringii
    Huang, Ye
    Zheng, Qinyao
    Zhang, Meng-Meng
    He, Xin
    Zhao, Xuewei
    Wang, Linying
    Lan, Siren
    Liu, Zhong-Jian
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2024, 25 (12)
  • [48] Genome-Wide In Silico Identification and Comparative Analysis of Dof Gene Family in Brassica napus
    Lohani, Neeta
    Babaei, Saeid
    Singh, Mohan B.
    Bhalla, Prem L.
    PLANTS-BASEL, 2021, 10 (04):
  • [49] Genome-Wide Identification and Characterization of FBA Gene Family in Polyploid Crop Brassica napus
    Zhao, Wei
    Liu, Hongfang
    Zhang, Liang
    Hu, Zhiyong
    Liu, Jun
    Hua, Wei
    Xu, Shouming
    Liu, Jing
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2019, 20 (22)
  • [50] Genome-wide analysis of the GRAS gene family in Chinese cabbage (Brassica rapa ssp pekinensis)
    Song, Xiao-Ming
    Liu, Tong-Kun
    Duan, Wei-Ke
    Ma, Qing-Hua
    Ren, Jun
    Wang, Zhen
    Li, Ying
    Hou, Xi-Lin
    GENOMICS, 2014, 103 (01) : 135 - 146