The Stability of Solution Set to η-Set-valued Weak Vector Variational Inequality Problem

被引:0
作者
Jia, Jing [1 ]
Yin, Shuifang [2 ]
Bu, Changchang [2 ]
机构
[1] Wuhan Univ Sci & Technol, Hubei Prov Key Lab Syst Sci Met Proc, Wuhan 430081, Peoples R China
[2] Wuhan Univ Sci & Technol, Coll Sci, Wuhan 430081, Peoples R China
来源
MECHANICAL COMPONENTS AND CONTROL ENGINEERING III | 2014年 / 668-669卷
关键词
set-valued weak vector variational inequality; Upper semi-continuity; eta-weak C pseudo-monotone; v-semicontinuous; NONREFLEXIVE BANACH-SPACES; OPERATORS;
D O I
10.4028/www.scientific.net/AMM.668-669.1134
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
In this paper, we discuss the upper semi-continuity of the solution to parameter eta-Set-valued weak vector variational inequality problem. We show that the operator of parameter eta-Set-valued weak vector variational inequality is not continuous, but it satisfies nu-semicontinuous and eta-weak C pseudo-monotone. Our results generalize the previous results in the literature.
引用
收藏
页码:1134 / +
页数:3
相关论文
共 50 条
[41]   The degree theory for set-valued compact perturbation of monotone-type mappings with an application [J].
Wang, Zhong-bao ;
Huang, Nan-jing .
APPLICABLE ANALYSIS, 2013, 92 (03) :616-635
[42]   A generalization of set-valued PreiAc-Reich type contractions in ultrametric spaces with applications [J].
Kumar, D. Ramesh ;
Pitchaimani, M. .
JOURNAL OF FIXED POINT THEORY AND APPLICATIONS, 2017, 19 (03) :1871-1887
[43]   A class of global fractional-order projective dynamical systems involving set-valued perturbations [J].
Wu, Zeng-bao ;
Zou, Yun-zhi ;
Huang, Nan-jing .
APPLIED MATHEMATICS AND COMPUTATION, 2016, 277 :23-33
[44]   Further remarks on local K-boundedness of K-subadditive set-valued maps [J].
Eliza Jabłońska ;
Kazimierz Nikodem .
Aequationes mathematicae, 2023, 97 :981-993
[45]   Outer Approximation Methods for Solving Variational Inequalities Defined over the Solution Set of a Split Convex Feasibility Problem [J].
Cegielski, Andrzej ;
Gibali, Aviv ;
Reich, Simeon ;
Zalas, Rafal .
NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2020, 41 (09) :1089-1108
[46]   Upper semicontinuity of the solution set to parametric vector quasivariational inequalities [J].
Khanh, PQ ;
Luu, LM .
JOURNAL OF GLOBAL OPTIMIZATION, 2005, 32 (04) :569-580
[47]   Semicontinuity of the solution set of parametric multivalued vector quasiequilibrium problems [J].
Anh, LQ ;
Khanh, PQ .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2004, 294 (02) :699-711
[48]   Upper Semicontinuity of the Solution set to Parametric Vector Quasivariational Inequalities [J].
Phan Quoc Khanh ;
Le Minh luu .
Journal of Global Optimization, 2005, 32 :569-580
[49]   Stability of the approximate solution sets for set optimization problems with the perturbations of feasible set and objective mapping [J].
Han, Yu ;
Li, Sheng-Jie .
OPTIMIZATION, 2024, 73 (13) :3755-3785
[50]   ON COINCIDENCE AND COMMON FIXED POINTS UNDER HOMOTOPY OF SET-VALUED MAPPING FAMILIES IN b-METRIC SPACES [J].
Bahmanyar, Esmail ;
Naraghirad, Eskandar ;
Soltani, Rahmat .
JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2022, 23 (03) :421-433