The Stability of Solution Set to η-Set-valued Weak Vector Variational Inequality Problem

被引:0
作者
Jia, Jing [1 ]
Yin, Shuifang [2 ]
Bu, Changchang [2 ]
机构
[1] Wuhan Univ Sci & Technol, Hubei Prov Key Lab Syst Sci Met Proc, Wuhan 430081, Peoples R China
[2] Wuhan Univ Sci & Technol, Coll Sci, Wuhan 430081, Peoples R China
来源
MECHANICAL COMPONENTS AND CONTROL ENGINEERING III | 2014年 / 668-669卷
关键词
set-valued weak vector variational inequality; Upper semi-continuity; eta-weak C pseudo-monotone; v-semicontinuous; NONREFLEXIVE BANACH-SPACES; OPERATORS;
D O I
10.4028/www.scientific.net/AMM.668-669.1134
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
In this paper, we discuss the upper semi-continuity of the solution to parameter eta-Set-valued weak vector variational inequality problem. We show that the operator of parameter eta-Set-valued weak vector variational inequality is not continuous, but it satisfies nu-semicontinuous and eta-weak C pseudo-monotone. Our results generalize the previous results in the literature.
引用
收藏
页码:1134 / +
页数:3
相关论文
共 50 条
[21]   Existence of Solutions to Generalized Vector Quasi-equilibrium Problems with Set-Valued Mappings [J].
Zhao, Yali ;
Lu, Hong ;
Wang, Chao .
PROCEEDINGS OF THE 2016 INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE: TECHNOLOGIES AND APPLICATIONS, 2016, 127
[22]   Set-Valued Variational Inclusion Governed by Generalized αiβj-Hp(., ., ... )-Accretive Mapping ... [J].
Gupta, Sanjeev ;
Khan, Faizan Ahmad .
AXIOMS, 2022, 11 (10)
[23]   Set-valued nonlinear variational inequalities for H-monotone mappings in nonreflexive Banach spaces [J].
Nga, NQ .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2003, 52 (02) :457-465
[24]   Coderivative Characterizations of Maximal Monotonicity for Set-Valued Mappings [J].
Chieu, N. H. ;
Lee, G. M. ;
Mordukhovich, B. S. ;
Nghia, T. T. A. .
JOURNAL OF CONVEX ANALYSIS, 2016, 23 (02) :461-480
[25]   On upper semicontinuity of some set-valued iteration semigroups [J].
Lydzinska, Grazyna .
JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2015, 21 (12) :1244-1255
[26]   Dynamic variable precision rough set approach for probabilistic set-valued information systems [J].
Huang, Yanyong ;
Li, Tianrui ;
Luo, Chuan ;
Fujita, Hamido ;
Horng, Shi-jinn .
KNOWLEDGE-BASED SYSTEMS, 2017, 122 :131-147
[27]   Variational-type inequalities for (η,θ,δ)-pseudomonotone-type set-valued mappings in nonreflexive Banach spaces [J].
Lee, BS ;
Lee, GM ;
Lee, SJ .
APPLIED MATHEMATICS LETTERS, 2002, 15 (01) :109-114
[28]   Sensitivity results for a general class of generalized vector quasi-equilibrium problems with set-valued maps [J].
Pham Huu Sach ;
Le Anh Tuan ;
Lee, Gue Myung .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 71 (1-2) :571-586
[29]   Convergence of set-valued mappings: Equi-outer semicontinuity [J].
Bagh, A ;
Wets, RJB .
SET-VALUED ANALYSIS, 1996, 4 (04) :333-360
[30]   Axiomatic systems for rough set-valued homomorphisms of associative rings [J].
Hooshmandasl, M. R. ;
Karimi, A. ;
Almbardar, M. ;
Davvaz, B. .
INTERNATIONAL JOURNAL OF APPROXIMATE REASONING, 2013, 54 (02) :297-306