Basic principles of hp virtual elements on quasiuniform meshes

被引:51
作者
Beirao da Veiga, L. [1 ]
Chernov, A. [2 ]
Mascotto, L. [2 ,3 ]
Russo, A. [1 ]
机构
[1] Univ Milano Bicocca, Dipartimento Matemat & Applicaz, Via Cozzi 53, I-20153 Milan, Italy
[2] Carl von Ossietzky Univ Oldenburg, Inst Math, Ammerlander Heerstr 114-118, D-26129 Oldenburg, Germany
[3] Univ Milano Statale, Dipartimento Matemat, Via Saldini 50, I-20133 Milan, Italy
关键词
Virtual elements; polygonal methods; hp error bounds; VERSION;
D O I
10.1142/S021820251650038X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the present paper we initiate the study of hp Virtual Elements. We focus on the case with uniform polynomial degree across the mesh and derive theoretical convergence estimates that are explicit both in the mesh size h and in the polynomial degree p in the case of finite Sobolev regularity. Exponential convergence is proved in the case of analytic solutions. The theoretical convergence results are validated in numerical experiments. Finally, an initial study on the possible choice of local basis functions is included.
引用
收藏
页码:1567 / 1598
页数:32
相关论文
共 29 条
[1]   Hierarchical finite element bases for triangular and tetrahedral elements [J].
Adjerid, S ;
Aiffa, M ;
Flaherty, JE .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2001, 190 (22-23) :2925-2941
[2]   Equivalent projectors for virtual element methods [J].
Ahmad, B. ;
Alsaedi, A. ;
Brezzi, F. ;
Marini, L. D. ;
Russo, A. .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2013, 66 (03) :376-391
[3]  
[Anonymous], 2003, SOBOLEV SPACES
[4]   A STREAM VIRTUAL ELEMENT FORMULATION OF THE STOKES PROBLEM ON POLYGONAL MESHES [J].
Antonietti, P. F. ;
da Veiga, L. Beirao ;
Mora, D. ;
Verani, M. .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2014, 52 (01) :386-404
[5]   THE OPTIMAL CONVERGENCE RATE OF THE P-VERSION OF THE FINITE-ELEMENT METHOD [J].
BABUSKA, I ;
SURI, M .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1987, 24 (04) :750-776
[6]  
BABUSKA I, 1987, RAIRO-MATH MODEL NUM, V21, P199
[7]   THE PROBLEM OF SELECTING THE SHAPE FUNCTIONS FOR A P-TYPE FINITE-ELEMENT [J].
BABUSKA, I ;
GRIEBEL, M ;
PITKARANTA, J .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1989, 28 (08) :1891-1908
[8]  
Beirao da Veiga L., ARXIV150802242
[9]   The virtual element method for discrete fracture network simulations [J].
Benedetto, Matias Fernando ;
Berrone, Stefano ;
Pieraccini, Sandra ;
Scialo, Stefano .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2014, 280 :135-156
[10]  
Bergh J., 1976, INTERPOLATION SPACES, V223