Perturbed Brownian motion and its application to Parisian option pricing

被引:33
作者
Dassios, Angelos [1 ]
Wu, Shanle [1 ]
机构
[1] London Sch Econ, Dept Stat, London WC2A 2AE, England
关键词
Excursion time; Two-state semi-Markov model; Path-dependent options; Parisian options; Laplace transform; EXCURSIONS;
D O I
10.1007/s00780-009-0113-0
中图分类号
F8 [财政、金融];
学科分类号
0202 ;
摘要
In this paper, we study the excursion times of a Brownian motion with drift below and above a given level by using a simple two-state semi-Markov model. In mathematical finance, these results have an important application in the valuation of path-dependent options such as Parisian options. Based on our results, we introduce a new type of Parisian options, single-barrier two-sided Parisian options, and give an explicit expression for the Laplace transform of its price formula.
引用
收藏
页码:473 / 494
页数:22
相关论文
共 10 条
[1]   SOME FORMULAE FOR A NEW TYPE OF PATH-DEPENDENT OPTION [J].
Akahori, Jiro .
ANNALS OF APPLIED PROBABILITY, 1995, 5 (02) :383-388
[2]   Double-sided Parisian option pricing [J].
Anderluh, J. H. M. ;
van der Weide, J. A. M. .
FINANCE AND STOCHASTICS, 2009, 13 (02) :205-238
[3]  
AZEMA J, 1989, LECT NOTES MATH, V1372, P88
[4]   Brownian excursions and Parisian barrier options [J].
Chesney, M ;
JeanblancPicque, M ;
Yor, M .
ADVANCES IN APPLIED PROBABILITY, 1997, 29 (01) :165-184
[5]   EXCURSIONS IN BROWNIAN-MOTION [J].
CHUNG, KL .
ARKIV FOR MATEMATIK, 1976, 14 (02) :155-177
[6]   THE DISTRIBUTION OF THE QUANTILE OF A BROWNIAN MOTION WITH DRIFT AND THE PRICING OF RELATED PATH-DEPENDENT OPTIONS [J].
Dassios, Angelos .
ANNALS OF APPLIED PROBABILITY, 1995, 5 (02) :389-398
[7]   PRICING DOUBLE BARRIER PARISIAN OPTIONS USING LAPLACE TRANSFORMS [J].
Labart, Celine ;
Lelong, Jerome .
INTERNATIONAL JOURNAL OF THEORETICAL AND APPLIED FINANCE, 2009, 12 (01) :19-44
[8]  
Pechtl A., 1999, J APPL MATH DECISION, V3, P63
[9]  
Revuz D., 1999, CONTINUOUS MARTINGAL
[10]   Brownian excursions and Parisian barrier options:: A note [J].
Schröder, M .
JOURNAL OF APPLIED PROBABILITY, 2003, 40 (04) :855-864