In this paper, we study the excursion times of a Brownian motion with drift below and above a given level by using a simple two-state semi-Markov model. In mathematical finance, these results have an important application in the valuation of path-dependent options such as Parisian options. Based on our results, we introduce a new type of Parisian options, single-barrier two-sided Parisian options, and give an explicit expression for the Laplace transform of its price formula.
机构:
INRIA Paris Rocquencourt, MathFi Project Domaine Voluceau, BP 105, F-78153 Le Chesnay, FranceINRIA Paris Rocquencourt, MathFi Project Domaine Voluceau, BP 105, F-78153 Le Chesnay, France
Labart, Celine
Lelong, Jerome
论文数: 0引用数: 0
h-index: 0
机构:
INRIA Paris Rocquencourt, MathFi Project Domaine Voluceau, BP 105, F-78153 Le Chesnay, FranceINRIA Paris Rocquencourt, MathFi Project Domaine Voluceau, BP 105, F-78153 Le Chesnay, France
机构:
INRIA Paris Rocquencourt, MathFi Project Domaine Voluceau, BP 105, F-78153 Le Chesnay, FranceINRIA Paris Rocquencourt, MathFi Project Domaine Voluceau, BP 105, F-78153 Le Chesnay, France
Labart, Celine
Lelong, Jerome
论文数: 0引用数: 0
h-index: 0
机构:
INRIA Paris Rocquencourt, MathFi Project Domaine Voluceau, BP 105, F-78153 Le Chesnay, FranceINRIA Paris Rocquencourt, MathFi Project Domaine Voluceau, BP 105, F-78153 Le Chesnay, France