Transport in complex magnetic geometries: 3D modelling of ergodic edge plasmas in fusion experiments

被引:10
作者
Runov, A
Kasilov, S
Reiter, D
McTaggart, N
Bonnin, X
Schneider, R
机构
[1] EURATOM, Max Planck Inst Plasmaphys, Teilinst Grefswald, D-17491 Greifswald, Germany
[2] Kharkov Phys & Technol Inst, Inst Plasma Phys, Natl Sci Ctr, UA-61108 Kharkov, Ukraine
[3] EURATOM, Forschungszentrum Julich GmbH, Inst Plasmaphys, Trilateral Euregio Cluster, D-52425 Julich, Germany
关键词
ergodic divertor; island divertor; stellarator; edge modelling;
D O I
10.1016/S0022-3115(02)01500-3
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Both stellarators and tokamaks can have quite complex magnetic topologies in the plasma edge. Special complexity is introduced by ergodic effects producing stochastic domains. Conventional numerical methods from fluid dynamics are not applicable in this case. In the present paper, we discuss two alternative possibilities. Our multiple coordinate system approach (MCSA) [Phys. Plasmas 8 (2001) 916] originally developed for the TEXTOR DED allows modelling of plasma transport in general magnetic field structures. The main idea of the concept is: magnetic field lines can exhibit truly stochastic behavior only for large distances (compared to the Kolmogorov length), while for smaller distances, the field remains regular. Thus, one can divide the computational domain into a finite set of sub-domains, introduce local magnetic coordinate systems in each and use an 'interpolated cell mapping' technique to switch between the neighboring coordinate systems. A 3D plasma fluid code (E3D, based upon MCSA) is applied to realistic geometries. We also introduce here some new details of the algorithm (stellarator option). The results obtained both for intrinsic (stellarator) and external (tokamak with ergodic divertor) perturbations of the magnetic field are discussed. Another approach, also using local coordinate systems, but based on more conventional finite difference methods, is also under development. Here, we present the outline of the algorithm and discuss its potential as compared to the Lagrangian Monte-Carlo approach. (C) 2003 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:1292 / 1297
页数:6
相关论文
共 14 条
[1]  
BECOULET M, 1999, 25 EPS C CONTR FUS J, V23, P989
[2]   W7-X edge modelling with the 3D SOL fluid code BoRiS [J].
Borchardt, M ;
Riemann, J ;
Schneider, R ;
Bonnin, X .
JOURNAL OF NUCLEAR MATERIALS, 2001, 290 :546-550
[3]  
De Berg M., 2000, COMPUTATIONAL GEOMET, DOI DOI 10.1007/978-3-662-03427-9
[4]   A 3D Monte Carlo code for plasma transport in island divertors [J].
Feng, Y ;
Sardei, F ;
Kisslinger, J ;
Grigull, P .
JOURNAL OF NUCLEAR MATERIALS, 1997, 241 :930-934
[5]  
FINKEN KH, 1997, FUSION ENG DES, V37, P1
[6]   A 2D approach to island divertor modelling for Wendelstein 7-AS [J].
Herre, G ;
Schneider, R ;
Coster, D ;
Sardei, F ;
Reiter, D ;
Grigull, P ;
Kisslinger, J .
JOURNAL OF NUCLEAR MATERIALS, 1997, 241 :941-945
[7]   3-DIMENSIONAL FREE-BOUNDARY CALCULATIONS USING A SPECTRAL GREENS-FUNCTION METHOD [J].
HIRSHMAN, SP ;
VANRIJ, WI .
COMPUTER PHYSICS COMMUNICATIONS, 1986, 43 (01) :143-155
[8]   Solution of the drift kinetic equation in the regime of weak collisions by stochastic mapping techniques [J].
Kasilov, SV ;
Moiseenko, VE ;
Heyn, MF .
PHYSICS OF PLASMAS, 1997, 4 (07) :2422-2435
[9]   Local island divertor experiments on CHS [J].
Komori, A ;
Ohyabu, N ;
Masuzaki, S ;
Morisaki, T ;
Suzuki, H ;
Takahashi, C ;
Sakakibara, S ;
Watanabe, K ;
Watanabe, T ;
Minami, T ;
Morita, S ;
Tanaka, K ;
Ohdachi, S ;
Kubo, S ;
Inoue, N ;
Yamada, H ;
Nishimura, K ;
Okamura, S ;
Matsuoka, K ;
Motojima, O ;
Fujiwara, M ;
Iiyoshi, A ;
Klepper, CC ;
Lyon, JF ;
England, AC ;
Greenwood, DE ;
Lee, DK ;
Overbey, DR ;
Rome, JA ;
Schechter, DE ;
Wilson, CT .
JOURNAL OF NUCLEAR MATERIALS, 1997, 241 :967-971
[10]   CALCULATIONS OF THE MAGNETIC SURFACE FUNCTION GRADIENT AND ASSOCIATED QUANTITIES IN A TORSATRON [J].
NEMOV, VV .
NUCLEAR FUSION, 1988, 28 (10) :1727-1736