Some Identities and Congruences for q-Stirling Numbers of the Second Kind

被引:0
作者
Diarra, Bertin [1 ]
Maiga, Hamadoun [2 ]
Mounkoro, Tongobe [2 ]
机构
[1] Campus Univ Cezeaux, UMR 6620 CNRS, Lab Math Blaise Pascal, 3 Pl Vasarely, F-63178 Aubiere, France
[2] Univ Sci Tech & Technol Bamako, Fac Sci & Tech, DER Math & Informat, BP E 3206, Bamako, Mali
关键词
p-adic measures; moments sequence; Laplace transform; Stirling numbers of the second kind; p(l)Z(p)-invariant function; congruences; identities; EULER; BERNOULLI;
D O I
10.1134/S2070046622020017
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The subject of this paper is the study of some properties of q-Stirling numbers of the second kind S-q(n, j) for q not equal 0 a complex or a p-adic complex number. In the p-adic setting, as we known, the Laplace transform plays an important role in the study of some arithmetic sequences. We remind the definition of the Laplace transform of a p-adic measure and its link with the moment of this measure. With the aid of a specific measure we establish some identities and congruences for the q-Stirling numbers S-q(n, j) when q is a non zero p-adic complex number and for the generalized q-Stirling numbers of the second kind S-psi,S-q (n, j) attached to a p-adic function psi that is invariant by p(l)Z(p). Also, we express the generalized q-Stirling numbers S-psi,S-q(n, j) according to generalized Stirling numbers S-psi(n, j).
引用
收藏
页码:85 / 102
页数:18
相关论文
共 16 条
[1]  
Comtet L, 1974, Advanced combinatorics, the art of finite and infinite expansions
[2]  
Crstici B., 2005, HDB NUMBER THEORY, V2
[3]  
Diarra B., 1994, S MINAIRE DANALYSE U, V98, P46093
[4]  
Diarra B., 2004, PREPRINTS
[5]  
ESCASSUT A, 1995, ANAL ELEMENTS P ADIC
[6]  
Knopf Peter M., 2003, Mathematics Magazine, V76, P364
[7]  
Lang S., 1987, CYCLOTOMIC FIELDS, P5, DOI [10.1007/978-1-4612-4752-4_1, DOI 10.1007/978-1-4612-9945-5]
[8]  
Maïga H, 2013, CONTEMP MATH, V596, P149
[9]  
Maïga H, 2011, CONTEMP MATH, V551, P207
[10]   Some identities and congruences concerning Euler numbers and polynomials [J].
Maiga, Hamadoun .
JOURNAL OF NUMBER THEORY, 2010, 130 (07) :1590-1601