Asymptotic expansion of resolvent kernels and behavior of spectral functions for symmetric stable processes

被引:3
作者
Wada, Masaki [1 ]
机构
[1] Tohoku Univ, Math Inst, Aoba Ku, Sendai, Miyagi 9808578, Japan
关键词
spectral function; symmetric stable process; Schrodinger form; criticality; Dirichlet form;
D O I
10.2969/jmsj/06920673
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give a precise behavior of spectral functions for symmetric stable processes applying the asymptotic expansion of resolvent kernels.
引用
收藏
页码:673 / 692
页数:20
相关论文
共 12 条
[1]  
[Anonymous], STUDIES MATH
[2]  
Blumenthal RM., 1960, T AM MATH SOC, V95, P263, DOI [DOI 10.1090/S0002-9947-1960-0119247-6, 10.1090/S0002-9947-1960-0119247-6]
[3]   Continuous model for homopolymers [J].
Cranston, M. ;
Koralov, L. ;
Molchanov, S. ;
Vainberg, B. .
JOURNAL OF FUNCTIONAL ANALYSIS, 2009, 256 (08) :2656-2696
[4]  
Kato T., 1976, Grundlehren der mathematischen Wissenschaften, V2
[5]   COUPLING-CONSTANT THRESHOLDS IN NON-RELATIVISTIC QUANTUM-MECHANICS .1. SHORT-RANGE 2-BODY CASE [J].
KLAUS, M ;
SIMON, B .
ANNALS OF PHYSICS, 1980, 130 (02) :251-281
[6]  
Kolokoltsov VN, 2011, DEGRUYTER STUD MATH, V38, P1
[7]  
Lieb E. H., 2001, Grad. Stud. Math., V14
[8]   Exponential growth of the numbers of particles for branching symmetric α-stable processes [J].
Shiozawa, Yuichi .
JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 2008, 60 (01) :75-116
[9]   Subcriticality and gaugeability for symmetric α-stable processes [J].
Takeda, M ;
Uemura, T .
FORUM MATHEMATICUM, 2004, 16 (04) :505-517
[10]   Large deviations for additive functionals of symmetric stable processes [J].
Takeda, Masayoshi .
JOURNAL OF THEORETICAL PROBABILITY, 2008, 21 (02) :336-355