Hydrothermal synthesis of MoS2 with different morphology and its performance in thermal battery

被引:109
作者
Zheng, Xiaodi [1 ]
Zhu, Yanli [1 ]
Sun, Yalun [1 ]
Jiao, Qingjie [1 ]
机构
[1] Beijing Inst Technol, State Key Lab Explos Sci & Technol, Beijing 100081, Peoples R China
基金
中国国家自然科学基金;
关键词
Molybdenum disulfide; Hydrothermal synthesis; Thermal battery; Growth mechanism; PHASE-TRANSITION; FACILE SYNTHESIS; TECHNOLOGY; STRAIN; LAYERS; MECHANISM; EVOLUTION; GROWTH; METAL; FES2;
D O I
10.1016/j.jpowsour.2018.05.092
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Three different kinds of hierarchical MoS2 microspheres are successfully synthesized by a simple hydrothermal route, and their morphology, thermal stability and electrochemical performance in thermal battery are characterized. The flower-like porous MoS2 microsphere with good crystallinity consists of MoS2 nano-sheets with thickness of about 10 nm. Its evolution process is proposed, and includes three stages: a nucleus growth process following the principle of Ostwald ripening, MoS2 nano-sheets growth and self-assembly. The dependence of the macroscopic electrochemical properties on the microscopic structure and morphology is discussed. Since the MoS2 with flower-like porous microsphere structure presents less weight loss, higher decomposition temperature, outstanding thermal stability and excellent compatibility with electrolyte, it performs longer discharge time and larger capacity when used as the cathode in the thermal battery, compared to MoS2 with other structures, FeS2 or CoS2. The possible discharge mechanism of MoS2 is proposed, and it can be divided into three steps, which are the generation of intercalation compounds containing lithium ions (LixMoS2), desulfurization generating low-valent intercalation compound and reduction from low-valent intercalation compound to Mo, respectively.
引用
收藏
页码:318 / 327
页数:10
相关论文
共 57 条
[1]   A Novel Wet Chemistry Approach for the Synthesis of Hybrid 2D Free-Floating Single or Multilayer Nanosheets of MS2@oleylamine (M=Mo, W) [J].
Altavilla, Claudia ;
Sarno, Maria ;
Ciambelli, Paolo .
CHEMISTRY OF MATERIALS, 2011, 23 (17) :3879-3885
[2]  
[Anonymous], 2014, J POWER SOURCES, V264, P262
[3]  
Attewell A., 1990, P 34 POW SOURC S, P295
[4]   Graphene-like MoS2/amorphous carbon composites with high capacity and excellent stability as anode materials for lithium ion batteries [J].
Chang, Kun ;
Chen, Weixiang ;
Ma, Lin ;
Li, Hui ;
Li, He ;
Huang, Feihe ;
Xu, Zhude ;
Zhang, Qingbo ;
Lee, Jim-Yang .
JOURNAL OF MATERIALS CHEMISTRY, 2011, 21 (17) :6251-6257
[5]   Core-shell MoO3-MoS2 Nanowires for Hydrogen Evolution: A Functional Design for Electrocatalytic Materials [J].
Chen, Zhebo ;
Cummins, Dustin ;
Reinecke, Benjamin N. ;
Clark, Ezra ;
Sunkara, Mahendra K. ;
Jaramillo, Thomas F. .
NANO LETTERS, 2011, 11 (10) :4168-4175
[6]   Thin films of fullerene-like MoS2 nanoparticles with ultra-low friction and wear [J].
Chhowalla, M ;
Amaratunga, GAJ .
NATURE, 2000, 407 (6801) :164-167
[7]   A route to synthesis molybdenum disulfide-reduced graphene oxide (MoS2-RGO) composites using supercritical methanol and their enhanced electrochemical performance for Li-ion batteries [J].
Choi, Mugyeom ;
Koppala, Siva Kumar ;
Yoon, Dohyeon ;
Hwang, Jieun ;
Kim, Seung Min ;
Kim, Jaehoon .
JOURNAL OF POWER SOURCES, 2016, 309 :202-211
[8]   Coherent Atomic and Electronic Heterostructures of Single-Layer MoS2 [J].
Eda, Goki ;
Fujita, Takeshi ;
Yamaguchi, Hisato ;
Voiry, Damien ;
Chen, Mingwei ;
Chhowalla, Manish .
ACS NANO, 2012, 6 (08) :7311-7317
[9]  
Gibbard H. F., 1988, P 4 INT M LI BATT VA
[10]  
Guidotti R. A., 1995, 27th International SAMPE Technical Conference. Diversity into the Next Century Vol.27, P807