Nonparametric maximum likelihood estimation of features in spatial point processes using Voronoi tessellation

被引:54
作者
Allard, D [1 ]
Fraley, C [1 ]
机构
[1] Univ Washington, Dept Stat, Seattle, WA 98195 USA
关键词
boundary estimation; minefield detection; mixture; Poisson process; seismic faults; uniform distribution;
D O I
10.2307/2965419
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This article addresses the problem of estimating the support domain of a bounded point process in presence of background noise. This situation occurs, for example, in the detection of a minefield from aerial observations. A maximum likelihood estimator for a mixture of uniform point processes is derived using a natural partition of the space defined by the data themselves: the Voronoi tessellation. The methodology is tested on simulations and compared to a model-based clustering technique.
引用
收藏
页码:1485 / 1493
页数:9
相关论文
共 16 条
[1]   MODEL-BASED GAUSSIAN AND NON-GAUSSIAN CLUSTERING [J].
BANFIELD, JD ;
RAFTERY, AE .
BIOMETRICS, 1993, 49 (03) :803-821
[2]   A CLASSIFICATION EM ALGORITHM FOR CLUSTERING AND 2 STOCHASTIC VERSIONS [J].
CELEUX, G ;
GOVAERT, G .
COMPUTATIONAL STATISTICS & DATA ANALYSIS, 1992, 14 (03) :315-332
[3]  
CHERNOFF H, 1954, P 3 BERK S MATH STAT, P19
[4]  
Cressie N., 1993, STAT SPATIAL DATA
[5]  
Diggle P.J., 1983, Statistical analysis of spatial point patterns
[6]  
GUPTA AK, 1986, METRON, V44, P247
[7]  
HEIJMANS HJA, 1993, MATH MORPHOLOGY IMAG, P171
[8]   MONTE-CARLO ESTIMATES OF THE DISTRIBUTIONS OF THE RANDOM POLYGONS OF THE VORONOI TESSELLATION WITH RESPECT TO A POISSON-PROCESS [J].
HINDE, AL ;
MILES, RE .
JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 1980, 10 (3-4) :205-223
[9]  
Isaaks E.H., 1989, INTRO APPL GEOSTATIS
[10]  
MCKENZIE M, 1982, B SEISMOLOGICAL STAT, V53, P1