Poly(N-Vinylcarbazole) Chemically Modified Graphene Oxide

被引:82
作者
Zhang, Bin [1 ]
Chen, Yu [1 ]
Zhuang, Xiaodong [1 ]
Liu, Gang [2 ]
Yu, Bo [1 ]
Kang, En-Tang [2 ]
Zhu, Jinhui [1 ]
Li, Yongxi [1 ]
机构
[1] E China Univ Sci & Technol, Key Lab Adv Mat, Dept Chem, Shanghai 200237, Peoples R China
[2] Natl Univ Singapore, Dept Chem & Biomol Engn, Singapore 119260, Singapore
基金
中国国家自然科学基金;
关键词
covalent modification; DDAT-PVK; functionalization of polymers; graphene oxide; nanotechnology; poly(N-vinylcarbazole); synthesis; MESOGEN-JACKETED POLYMER; RADICAL POLYMERIZATION; OXADIAZOLE UNITS; ELECTRON; NANOCOMPOSITES; ISOCYANATE; PORPHYRIN; PVK;
D O I
10.1002/pola.24047
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
A new soluble donor-acceptor type poly(N-vinylcarbazole)-covalently functionalized graphene oxide (GO-PVK) has been synthesized by reaction of DDAT (S-1-dodecyl-S'-(alpha,alpha'-dimethyl-alpha ''-aceticacid)trithiocarbonate)-PVK with GO-toluene-2,4-diisocynate The incorporation of sufficient amount of PVK chains makes the modified GO nanosheets readily dispersible in organic solvents The resulting material exhibits an enhanced solubility of 10 mg/mL in organic solvents Covalent grafting of PVK onto the edge and surface of GO nanosheets did not change the carbazole absorption in the ultraviolet region, but substantially reduced the absorption intensity of GO in the visible region The intensity of the emission band of GO-PVK at 437 nm was a little bit quenched when compared with that of DDAT-PVK, suggesting intramolecular quenching from PVK to GO Such intramolecular quenching process may involve energy or electron transfer between the excited singlet states of the PVK moiety and the GO moiety The HOMO/LUMO values and the energy bandgap of GO-PVK experimentally estimated by the onset of the redox potentials are -5 60, -3 58, and 2 02 eV, respectively (C) 2010 Wiley Periodicals, Inc J Polym Sci Part A Polym Chem 48 2642-2649, 2010
引用
收藏
页码:2642 / 2649
页数:8
相关论文
共 57 条
  • [1] Donor-acceptor type low band gap polymers: polysquaraines and related systems
    Ajayaghosh, A
    [J]. CHEMICAL SOCIETY REVIEWS, 2003, 32 (04) : 181 - 191
  • [2] [Anonymous], CHEM REV
  • [3] Reversible addition-fragmentation chain transfer graft copolymerization of styrene and m-isopropenyl-α,α′-dimethylbenzyl isocyanate from polypropylene lanterns:: Solid phases for scavenging applications
    Barner, L
    Pereira, S
    Sandanayake, S
    Davis, TP
    [J]. JOURNAL OF POLYMER SCIENCE PART A-POLYMER CHEMISTRY, 2006, 44 (02) : 857 - 864
  • [4] The future of reversible addition fragmentation chain transfer polymerization
    Barner-Kowollik, Christopher
    Perrier, Sebastien
    [J]. JOURNAL OF POLYMER SCIENCE PART A-POLYMER CHEMISTRY, 2008, 46 (17) : 5715 - 5723
  • [5] Ultrahigh electron mobility in suspended graphene
    Bolotin, K. I.
    Sikes, K. J.
    Jiang, Z.
    Klima, M.
    Fudenberg, G.
    Hone, J.
    Kim, P.
    Stormer, H. L.
    [J]. SOLID STATE COMMUNICATIONS, 2008, 146 (9-10) : 351 - 355
  • [6] Atom transfer radical polymerization of N-vinyl carbazole:: Optimization to characterization
    Brar, AS
    Kaur, S
    [J]. JOURNAL OF POLYMER SCIENCE PART A-POLYMER CHEMISTRY, 2006, 44 (05) : 1745 - 1757
  • [7] Charlier JC, 2008, TOP APPL PHYS, V111, P673, DOI 10.1007/978-3-540-72865-8_21
  • [8] Electron Transport in Single Molecules: From Benzene to Graphene
    Chen, F.
    Tao, N. J.
    [J]. ACCOUNTS OF CHEMICAL RESEARCH, 2009, 42 (03) : 429 - 438
  • [9] Chen Y, 1996, J POLYM SCI POL PHYS, V34, P631, DOI 10.1002/(SICI)1099-0488(199603)34:4<631::AID-POLB3>3.3.CO
  • [10] 2-O