Bone tissue regeneration: the role of scaffold geometry

被引:416
作者
Zadpoor, Amir A. [1 ]
机构
[1] Delft Univ Technol, Delft Univ Technol, Fac Mech Maritime & Mat Engn, Dept Biomech Engn, NL-2628 CD Delft, Netherlands
关键词
STEM-CELL FATE; POROUS TITANIUM BIOMATERIALS; BMP-INDUCED OSTEOGENESIS; INDUCED PHASE-SEPARATION; IN-VIVO; TI-6AL-4V STRUCTURES; MECHANICAL-BEHAVIOR; BIOLOGICAL TISSUES; TRABECULAR BONE; DISTANCE FIELD;
D O I
10.1039/c4bm00291a
中图分类号
TB3 [工程材料学]; R318.08 [生物材料学];
学科分类号
0805 ; 080501 ; 080502 ;
摘要
The geometry of porous scaffolds that are used for bone tissue engineering and/or bone substitution has recently been shown to significantly influence the cellular response and the rate of bone tissue regeneration. Most importantly, it has been shown that the rate of tissue generation increases with curvature and is much larger on concave surfaces as compared to convex and planar surfaces. In this work, recent discoveries concerning the effects of geometrical features of porous scaffolds such as surface curvature, pore shape, and pore size on the cellular response and bone tissue regeneration process are reviewed. In addition to reviewing the recent experimental observations, we discuss the mechanisms through which geometry affects the bone tissue regeneration process. Of particular interest are the theoretical models that have been developed to explain the role of geometry in the bone tissue regeneration process. We then follow with a section on the implications of the observed phenomena for geometrical design of porous scaffolds including the application of predictive computational models in geometrical design of porous scaffolds. Moreover, some geometrical concepts in the design of porous scaffolds such as minimal surfaces and porous structures with geometrical gradients that have not been explored before are suggested for future studies. We especially focus on the porous scaffolds manufactured using additive manufacturing techniques where the geometry of the porous scaffolds could be precisely controlled. The paper concludes with a general discussion of the current state-of-the-art and recommendations for future research.
引用
收藏
页码:231 / 245
页数:15
相关论文
共 124 条
[1]   Mechanical behavior of regular open-cell porous biomaterials made of diamond lattice unit cells [J].
Ahmadi, S. M. ;
Campoli, G. ;
Yavari, S. Amin ;
Sajadi, B. ;
Wauthle, R. ;
Schrooten, J. ;
Weinans, H. ;
Zadpoor, A. A. .
JOURNAL OF THE MECHANICAL BEHAVIOR OF BIOMEDICAL MATERIALS, 2014, 34 :106-115
[2]   Impact of 3-D printed PLA- and chitosan-based scaffolds on human monocyte/macrophage responses: Unraveling the effect of 3-D structures on inflammation [J].
Almeida, Catarina R. ;
Serra, Tiziano ;
Oliveira, Marta I. ;
Planell, Josep A. ;
Barbosa, Mario A. ;
Navarro, Melba .
ACTA BIOMATERIALIA, 2014, 10 (02) :613-622
[3]   Growth and dissipation in biological tissues [J].
Ambrosi, D. ;
Guillou, A. .
CONTINUUM MECHANICS AND THERMODYNAMICS, 2007, 19 (05) :245-251
[4]   Stress-modulated growth [J].
Ambrosi, D. ;
Guana, F. .
MATHEMATICS AND MECHANICS OF SOLIDS, 2007, 12 (03) :319-342
[5]   Perspectives on biological growth and remodeling [J].
Ambrosi, D. ;
Ateshian, G. A. ;
Arruda, E. M. ;
Cowin, S. C. ;
Dumais, J. ;
Goriely, A. ;
Holzapfel, G. A. ;
Humphrey, J. D. ;
Kemkemer, R. ;
Kuhl, E. ;
Olberding, J. E. ;
Taber, L. A. ;
Garikipati, K. .
JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 2011, 59 (04) :863-883
[6]  
Amini AR, 2012, TISSUE ENG PT A, V18, P1376, DOI [10.1089/ten.tea.2011.0076, 10.1089/ten.TEA.2011.0076]
[7]  
Ateshian GA, 2012, ANNU REV BIOMED ENG, V14, P97, DOI [10.1146/annurev-bioeng-071910-124726, 10.1146/annurev.bioeng-071910-124726]
[8]   On the theory of reactive mixtures for modeling biological growth [J].
Ateshian G.A. .
Biomechanics and Modeling in Mechanobiology, 2007, 6 (6) :423-445
[9]   Multigenerational interstitial growth of biological tissues [J].
Ateshian, Gerard A. ;
Ricken, Tim .
BIOMECHANICS AND MODELING IN MECHANOBIOLOGY, 2010, 9 (06) :689-702
[10]  
Bai F, 2010, TISSUE ENG PT A, V16, P3791, DOI [10.1089/ten.tea.2010.0148, 10.1089/ten.TEA.2010.0148]