Interplay between demographic, clinical and polygenic risk factors for severe COVID-19

被引:10
作者
Crossfield, Samantha S. R. [1 ,2 ]
Chaddock, Natalie J. M. [1 ,2 ]
Iles, Mark M. [1 ,2 ]
Pujades-Rodriguez, Mar [1 ,2 ]
Morgan, Ann W. [1 ,2 ,3 ,4 ]
机构
[1] Univ Leeds, Sch Med, Leeds, W Yorkshire, England
[2] Univ Leeds, Leeds Inst Data Analyt, Leeds, W Yorkshire, England
[3] Leeds Teaching Hosp NHS Trust, NIHR Leeds Biomed Res Ctr, Leeds, W Yorkshire, England
[4] Leeds Teaching Hosp NHS Trust, NIHR Leeds Medtech & Vitro Diagnost Cooperat, Leeds, W Yorkshire, England
关键词
COVID-19; polygenic risk score; epidemiology; risk prediction;
D O I
10.1093/ije/dyac137
中图分类号
R1 [预防医学、卫生学];
学科分类号
1004 ; 120402 ;
摘要
Background We aimed to identify clinical, socio-demographic and genetic risk factors for severe COVID-19 (hospitalization, critical care admission or death) in the general population. Methods In this observational study, we identified 9560 UK Biobank participants diagnosed with COVID-19 during 2020. A polygenic risk score (PRS) for severe COVID-19 was derived and optimized using publicly available European and trans-ethnic COVID-19 genome-wide summary statistics. We estimated the risk of hospital or critical care admission within 28 days or death within 100 days following COVID-19 diagnosis, and assessed associations with socio-demographic factors, immunosuppressant use and morbidities reported at UK Biobank enrolment (2006-2010) and the PRS. To improve biological understanding, pathway analysis was performed using genetic variants comprising the PRS. Results We included 9560 patients followed for a median of 61 (interquartile range = 34-88) days since COVID-19 diagnosis. The risk of severe COVID-19 increased with age and obesity, and was higher in men, current smokers, those living in socio-economically deprived areas, those with historic immunosuppressant use and individuals with morbidities and higher co-morbidity count. An optimized PRS, enriched for single-nucleotide polymorphisms in multiple immune-related pathways, including the 'oligoadenylate synthetase antiviral response' and 'interleukin-10 signalling' pathways, was associated with severe COVID-19 (adjusted odds ratio 1.32, 95% CI 1.11-1.58 for the highest compared with the lowest PRS quintile). Conclusion This study conducted in the pre-SARS-CoV-2-vaccination era, emphasizes the novel insights to be gained from using genetic data alongside commonly considered clinical and socio-demographic factors to develop greater biological understanding of severe COVID-19 outcomes.
引用
收藏
页码:1384 / 1395
页数:12
相关论文
共 29 条
[1]   Tutorial: a guide to performing polygenic risk score analyses [J].
Choi, Shing Wan ;
Mak, Timothy Shin-Heng ;
O'Reilly, Paul F. .
NATURE PROTOCOLS, 2020, 15 (09) :2759-2772
[2]   PRSice-2: Polygenic Risk Score software for biobank-scale data [J].
Choi, Shing Wan ;
O'Reilly, Paul F. .
GIGASCIENCE, 2019, 8 (07)
[3]  
COVID-19 Host Genetics Initiative, 2021, NATURE, V600, p472 477
[4]  
COX DR, 1972, J R STAT SOC B, V34, P187
[5]   An integrated clinical and genetic model for predicting risk of severe COVID-19: A population-based case-control study [J].
Dite, Gillian S. ;
Murphy, Nicholas M. ;
Allman, Richard .
PLOS ONE, 2021, 16 (02)
[6]   Features of 20133 UK patients in hospital with covid-19 using the ISARIC WHO Clinical Characterisation Protocol: prospective observational cohort study [J].
Docherty, Annemarie B. ;
Harrison, Ewen M. ;
Green, Christopher A. ;
Hardwick, Hayley E. ;
Pius, Riinu ;
Norman, Lisa ;
Holden, Karl A. ;
Read, Jonathan M. ;
Dondelinger, Frank ;
Carson, Gail ;
Merson, Laura ;
Lee, James ;
Plotkin, Daniel ;
Sigfrid, Louise ;
Halpin, Sophie ;
Jackson, Clare ;
Gamble, Carrol ;
Horby, Peter W. ;
Nguyen-Van-Tam, Jonathan S. ;
Ho, Antonia ;
Russell, Clark D. ;
Dunning, Jake ;
Openshaw, Peter Jm ;
Baillie, J. Kenneth ;
Semple, Malcolm G. .
BMJ-BRITISH MEDICAL JOURNAL, 2020, 369
[7]   Genomewide Association Study of Severe Covid-19 with Respiratory Failure [J].
Ellinghaus, David ;
Degenhardt, Frauke ;
Bujanda, Luis ;
Buti, Maria ;
Albillos, Agustin ;
Invernizzi, Pietro ;
Fernandez, Javier ;
Prati, Daniele ;
Baselli, Guido ;
Asselta, Rosanna ;
Grimsrud, Marit M. ;
Milani, Chiara ;
Aziz, Fatima ;
Kassens, Jan ;
May, Sandra ;
Wendorff, Mareike ;
Wienbrandt, Lars ;
Uellendahl-Werth, Florian ;
Zheng, Tenghao ;
Yi, Xiaoli ;
de Pablo, Raul ;
Chercoles, Adolfo G. ;
Palom, Adriana ;
Garcia-Fernandez, Alba-Estela ;
Rodriguez-Frias, Francisco ;
Zanella, Alberto ;
Bandera, Alessandra ;
Protti, Alessandro ;
Aghemo, Alessio ;
Lleo, Ana ;
Biondi, Andrea ;
Caballero-Garralda, Andrea ;
Gori, Andrea ;
Tanck, Anja ;
Nolla, Anna Carreras ;
Latiano, Anna ;
Fracanzani, Anna Ludovica ;
Peschuck, Anna ;
Julia, Antonio ;
Pesenti, Antonio ;
Voza, Antonio ;
Jimenez, David ;
Mateos, Beatriz ;
Jimenez, Beatriz Nafria ;
Quereda, Carmen ;
Paccapelo, Cinzia ;
Gassner, Christoph ;
Angelini, Claudio ;
Cea, Cristina ;
Solier, Aurora .
NEW ENGLAND JOURNAL OF MEDICINE, 2020, 383 (16) :1522-1534
[8]   COVID-19 mortality in the UK Biobank cohort: revisiting and evaluating risk factors [J].
Elliott, Joshua ;
Bodinier, Barbara ;
Whitaker, Matthew ;
Delpierre, Cyrille ;
Vermeulen, Roel ;
Tzoulaki, Ioanna ;
Elliott, Paul ;
Chadeau-Hyam, Marc .
EUROPEAN JOURNAL OF EPIDEMIOLOGY, 2021, 36 (03) :299-309
[9]   Comparison of Sociodemographic and Health-Related Characteristics of UK Biobank Participants With Those of the General Population [J].
Fry, Anna ;
Littlejohns, Thomas J. ;
Sudlow, Cathie ;
Doherty, Nicola ;
Adamska, Ligia ;
Sprosen, Tim ;
Collins, Rory ;
Allen, Naomi E. .
AMERICAN JOURNAL OF EPIDEMIOLOGY, 2017, 186 (09) :1026-1034
[10]   Dementia is a predictor for mortality outcome from coronavirus disease 2019 (COVID-19) infection [J].
Hariyanto, Timotius Ivan ;
Putri, Cynthia ;
Situmeang, Rocksy Fransisca V. ;
Kurniawan, Andree .
EUROPEAN ARCHIVES OF PSYCHIATRY AND CLINICAL NEUROSCIENCE, 2021, 271 (02) :393-395