Fractional differential equations as alternative models to nonlinear differential equations

被引:149
作者
Bonilla, B. [1 ]
Rivero, M. [1 ]
Rodriguez-Germa, L. [1 ]
Trujillo, J. J. [1 ]
机构
[1] Univ La Laguna, Dept Anal Matemat, ES-38271 San Cristobal la Laguna, Islaa Canarias, Spain
关键词
fractional differential equations; fractional models; Weierstrass type functions;
D O I
10.1016/j.amc.2006.08.105
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The main objective of this paper is to demonstrate the possibility of using fractional differential equations to simulate the dynamics of anomalous processes whose analytical representations are continuous but strongly not differentiable, like Weierstrass-type functions. This allows for the possibility of modeling phenomena which traditional differential modeling cannot accomplish. To this end we shall see how some functions of this kind have a fractional derivative at every point in a real interval, and are therefore solutions to fractional differential equations. (C) 2006 Published by Elsevier Inc.
引用
收藏
页码:79 / 88
页数:10
相关论文
共 13 条
  • [1] Interpretation of a fractional diffusion equation with nonconserved probability density in terms of experimental systems with trapping or recombination
    Bisquert, J
    [J]. PHYSICAL REVIEW E, 2005, 72 (01):
  • [2] Caputo M., 1971, Rivista del Nuovo Cimento, V1, P161, DOI 10.1007/BF02820620
  • [3] Gorenflo R., 2002, FRACT CALC APPL ANAL, V5, P491
  • [4] GORENFLO R, 1997, CISM COURSES LECT, V378, P277
  • [5] Jump processes and nonlinear fractional heat equations on metric measure spaces
    Hu, JX
    Zähle, M
    [J]. MATHEMATISCHE NACHRICHTEN, 2006, 279 (1-2) : 150 - 163
  • [6] Kilbas AA, 2003, FACTORIZATION, SINGULAR OPERATORS AND RELATED PROBLEMS, PROCEEDINGS, P151
  • [7] Kilbas AA., 2006, THEORY APPL FRACTION
  • [8] The random walk's guide to anomalous diffusion: a fractional dynamics approach
    Metzler, R
    Klafter, J
    [J]. PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2000, 339 (01): : 1 - 77
  • [9] Miller K.S.B. Ross., 1993, INTRO FRACTIONAL CAL, V1st, P384
  • [10] Podlubny I., 1999, MATH SCI ENG