AI applications to medical images: From machine learning to deep learning

被引:309
|
作者
Castiglioni, Isabella [1 ,2 ]
Rundo, Leonardo [3 ,4 ]
Codari, Marina [5 ]
Leo, Giovanni Di [6 ]
Salvatore, Christian [7 ,8 ]
Interlenghi, Matteo [8 ]
Gallivanone, Francesca [2 ]
Cozzi, Andrea [9 ]
D'Amico, Natascha Claudia [10 ,11 ]
Sardanelli, Francesco [6 ]
机构
[1] Univ Milano Bicocca, Dept Phys, Piazza Sci 3, I-20126 Milan, Italy
[2] CNR, Inst Biomed Imaging & Physiol, Via Fratelli Cervi 93, I-20090 Segrate, Italy
[3] Cambridge Biomed Campus, Dept Radiol, Box 218, Cambridge CB2 0QQ, England
[4] Univ Cambridge, Li Ka Shing Ctr, Canc Res UK Cambridge Ctr, Robinson Way, Cambridge CB2 0RE, England
[5] Stanford Univ, Sch Med, Dept Radiol, 300 Pasteur Dr, Stanford, CA 94305 USA
[6] IRCCS Policlin San Donato, Unit Radiol, Via Rodolfo Morandi 30, I-20097 San Donato Milanese, Italy
[7] Scuola Univ Super IUSS Pavia, Piazza Vittoria 15, I-27100 Pavia, Italy
[8] DeepTrace Technol Srl, Via Conservatorio 17, I-20122 Milan, Italy
[9] Univ Milan, Dept Biomed Sci Hlth, Via Luigi Mangiagalli 31, I-20133 Milan, Italy
[10] Ctr Diagnost Italiano SpA, Dept Diagnost Imaging & Stereotact Radiosurg, Via St Bon 20, I-20147 Milan, Italy
[11] Univ Campus BioMed Roma, Dept Engn, Unit Comp Syst & Bioinformat, Via Alvaro Portillo 21, I-00128 Rome, Italy
关键词
Artificial intelligence; Deep learning; Machine learning; Medical imaging; Radiomics; CONVOLUTIONAL NEURAL-NETWORKS; FINITE-SAMPLE SIZE; ARTIFICIAL-INTELLIGENCE; FEATURE-SELECTION; BLACK-BOX; RADIOMICS; CLASSIFICATION; PERFORMANCE; VALIDATION; ALGORITHMS;
D O I
10.1016/j.ejmp.2021.02.006
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Purpose: Artificial intelligence (AI) models are playing an increasing role in biomedical research and healthcare services. This review focuses on challenges points to be clarified about how to develop AI applications as clinical decision support systems in the real-world context. Methods: A narrative review has been performed including a critical assessment of articles published between 1989 and 2021 that guided challenging sections. Results: We first illustrate the architectural characteristics of machine learning (ML)/radiomics and deep learning (DL) approaches. For ML/radiomics, the phases of feature selection and of training, validation, and testing are described. DL models are presented as multi-layered artificial/convolutional neural networks, allowing us to directly process images. The data curation section includes technical steps such as image labelling, image annotation (with segmentation as a crucial step in radiomics), data harmonization (enabling compensation for differences in imaging protocols that typically generate noise in non-AI imaging studies) and federated learning. Thereafter, we dedicate specific sections to: sample size calculation, considering multiple testing in AI approaches; procedures for data augmentation to work with limited and unbalanced datasets; and the interpretability of AI models (the so-called black box issue). Pros and cons for choosing ML versus DL to implement AI applications to medical imaging are finally presented in a synoptic way. Conclusions: Biomedicine and healthcare systems are one of the most important fields for AI applications and medical imaging is probably the most suitable and promising domain. Clarification of specific challenging points facilitates the development of such systems and their translation to clinical practice.
引用
收藏
页码:9 / 24
页数:16
相关论文
共 50 条
  • [21] Basic of machine learning and deep learning in imaging for medical physicists
    Manco, Luigi
    Maffei, Nicola
    Strolin, Silvia
    Vichi, Sara
    Bottazzi, Luca
    Strigari, Lidia
    PHYSICA MEDICA-EUROPEAN JOURNAL OF MEDICAL PHYSICS, 2021, 83 : 194 - 205
  • [22] Machine Learning and Deep Learning: Recent Overview in Medical Care
    Chalabi, Nour Elhouda
    Attia, Abdelouahab
    Akrouf, Samir
    INTERNET OF THINGS, INFRASTRUCTURES AND MOBILE APPLICATIONS, 2021, 1192 : 223 - 231
  • [23] Machine Learning and Deep Learning in Medical Imaging: Intelligent Imaging
    Currie, Geoff
    Hawk, K. Elizabeth
    Rohren, Eric
    Vial, Alanna
    Klein, Ran
    JOURNAL OF MEDICAL IMAGING AND RADIATION SCIENCES, 2019, 50 (04) : 477 - 487
  • [24] Fruit recognition from images using deep learning applications
    Gill, Harmandeep Singh
    Murugesan, Ganpathy
    Khehra, Baljit Singh
    Sajja, Guna Sekhar
    Gupta, Gaurav
    Bhatt, Abhishek
    MULTIMEDIA TOOLS AND APPLICATIONS, 2022, 81 (23) : 33269 - 33290
  • [25] Fruit recognition from images using deep learning applications
    Harmandeep Singh Gill
    Ganpathy Murugesan
    Baljit Singh Khehra
    Guna Sekhar Sajja
    Gaurav Gupta
    Abhishek Bhatt
    Multimedia Tools and Applications, 2022, 81 : 33269 - 33290
  • [26] Classification of medical images using machine learning
    Perez-Careta, Eduardo
    Guzman-Sepulveda, Jose-Rafael
    Lozano-Garcia, Jose-Merced
    Torres-Cisneros, Miguel
    Guzman-Cabrera, Rafael
    DYNA, 2022, 97 (01): : 35 - 38
  • [27] Machine learning classifier of medical specimen images
    Maidment, Tristan D.
    Ng, Susan
    15TH INTERNATIONAL WORKSHOP ON BREAST IMAGING (IWBI2020), 2020, 11513
  • [28] Definitions: Machine learning, deep leerning and AI understanding
    Pourjavan, Sayeh
    ACTA OPHTHALMOLOGICA, 2019, 97
  • [29] Deep similarity learning for multimodal medical images
    Cheng, Xi
    Zhang, Li
    Zheng, Yefeng
    COMPUTER METHODS IN BIOMECHANICS AND BIOMEDICAL ENGINEERING-IMAGING AND VISUALIZATION, 2018, 6 (03): : 248 - 252
  • [30] Deep Learning in Medical Hyperspectral Images: A Review
    Cui, Rong
    Yu, He
    Xu, Tingfa
    Xing, Xiaoxue
    Cao, Xiaorui
    Yan, Kang
    Chen, Jiexi
    SENSORS, 2022, 22 (24)