AI applications to medical images: From machine learning to deep learning

被引:357
作者
Castiglioni, Isabella [1 ,2 ]
Rundo, Leonardo [3 ,4 ]
Codari, Marina [5 ]
Leo, Giovanni Di [6 ]
Salvatore, Christian [7 ,8 ]
Interlenghi, Matteo [8 ]
Gallivanone, Francesca [2 ]
Cozzi, Andrea [9 ]
D'Amico, Natascha Claudia [10 ,11 ]
Sardanelli, Francesco [6 ]
机构
[1] Univ Milano Bicocca, Dept Phys, Piazza Sci 3, I-20126 Milan, Italy
[2] CNR, Inst Biomed Imaging & Physiol, Via Fratelli Cervi 93, I-20090 Segrate, Italy
[3] Cambridge Biomed Campus, Dept Radiol, Box 218, Cambridge CB2 0QQ, England
[4] Univ Cambridge, Li Ka Shing Ctr, Canc Res UK Cambridge Ctr, Robinson Way, Cambridge CB2 0RE, England
[5] Stanford Univ, Sch Med, Dept Radiol, 300 Pasteur Dr, Stanford, CA 94305 USA
[6] IRCCS Policlin San Donato, Unit Radiol, Via Rodolfo Morandi 30, I-20097 San Donato Milanese, Italy
[7] Scuola Univ Super IUSS Pavia, Piazza Vittoria 15, I-27100 Pavia, Italy
[8] DeepTrace Technol Srl, Via Conservatorio 17, I-20122 Milan, Italy
[9] Univ Milan, Dept Biomed Sci Hlth, Via Luigi Mangiagalli 31, I-20133 Milan, Italy
[10] Ctr Diagnost Italiano SpA, Dept Diagnost Imaging & Stereotact Radiosurg, Via St Bon 20, I-20147 Milan, Italy
[11] Univ Campus BioMed Roma, Dept Engn, Unit Comp Syst & Bioinformat, Via Alvaro Portillo 21, I-00128 Rome, Italy
来源
PHYSICA MEDICA-EUROPEAN JOURNAL OF MEDICAL PHYSICS | 2021年 / 83卷
关键词
Artificial intelligence; Deep learning; Machine learning; Medical imaging; Radiomics; CONVOLUTIONAL NEURAL-NETWORKS; FINITE-SAMPLE SIZE; ARTIFICIAL-INTELLIGENCE; FEATURE-SELECTION; BLACK-BOX; RADIOMICS; CLASSIFICATION; PERFORMANCE; VALIDATION; ALGORITHMS;
D O I
10.1016/j.ejmp.2021.02.006
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Purpose: Artificial intelligence (AI) models are playing an increasing role in biomedical research and healthcare services. This review focuses on challenges points to be clarified about how to develop AI applications as clinical decision support systems in the real-world context. Methods: A narrative review has been performed including a critical assessment of articles published between 1989 and 2021 that guided challenging sections. Results: We first illustrate the architectural characteristics of machine learning (ML)/radiomics and deep learning (DL) approaches. For ML/radiomics, the phases of feature selection and of training, validation, and testing are described. DL models are presented as multi-layered artificial/convolutional neural networks, allowing us to directly process images. The data curation section includes technical steps such as image labelling, image annotation (with segmentation as a crucial step in radiomics), data harmonization (enabling compensation for differences in imaging protocols that typically generate noise in non-AI imaging studies) and federated learning. Thereafter, we dedicate specific sections to: sample size calculation, considering multiple testing in AI approaches; procedures for data augmentation to work with limited and unbalanced datasets; and the interpretability of AI models (the so-called black box issue). Pros and cons for choosing ML versus DL to implement AI applications to medical imaging are finally presented in a synoptic way. Conclusions: Biomedicine and healthcare systems are one of the most important fields for AI applications and medical imaging is probably the most suitable and promising domain. Clarification of specific challenging points facilitates the development of such systems and their translation to clinical practice.
引用
收藏
页码:9 / 24
页数:16
相关论文
共 177 条
[51]   From hype to reality: data science enabling personalized medicine [J].
Froehlich, Holger ;
Balling, Rudi ;
Beerenwinkel, Niko ;
Kohlbacher, Oliver ;
Kumar, Santosh ;
Lengauer, Thomas ;
Maathuis, Marloes H. ;
Moreau, Yves ;
Murphy, Susan A. ;
Przytycka, Teresa M. ;
Rebhan, Michael ;
Rost, Hannes ;
Schuppert, Andreas ;
Schwab, Matthias ;
Spang, Rainer ;
Stekhoven, Daniel ;
Sun, Jimeng ;
Weber, Andreas ;
Ziemek, Daniel ;
Zupan, Blaz .
BMC MEDICINE, 2018, 16
[52]   EFFECTS OF SAMPLE-SIZE IN CLASSIFIER DESIGN [J].
FUKUNAGA, K ;
HAYES, RR .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1989, 11 (08) :873-885
[53]   Parameters Influencing PET Imaging Features: A Phantom Study with Irregular and Heterogeneous Synthetic Lesions [J].
Gallivanone, Francesca ;
Interlenghi, Matteo ;
D'Ambrosio, Daniela ;
Trifiro, Giuseppe ;
Castiglioni, Isabella .
CONTRAST MEDIA & MOLECULAR IMAGING, 2018,
[54]   A framework for data-driven adaptive GUI generation based on DICOM [J].
Gambino, Orazio ;
Rundo, Leonardo ;
Cannella, Vincenzo ;
Vitabile, Salvatore ;
Pirrone, Roberto .
JOURNAL OF BIOMEDICAL INFORMATICS, 2018, 88 :37-52
[55]   Ethics of Artificial Intelligence in Radiology: Summary of the Joint European and North American Multisociety Statement [J].
Geis, J. Raymond ;
Brady, Adrian P. ;
Wu, Carol C. ;
Spencer, Jack ;
Ranschaert, Erik ;
Jaremko, Jacob L. ;
Langer, Steve G. ;
Kitts, Andrea Borondy ;
Birch, Judy ;
Shields, William F. ;
van Genderen, Robert van den Hoven ;
Kotter, Elmar ;
Gichoya, Judy Wawira ;
Cook, Tessa S. ;
Morgan, Matthew B. ;
Tang, An ;
Safdar, Nabile M. ;
Kohli, Marc .
RADIOLOGY, 2019, 293 (02) :436-440
[56]   NiftyNet: a deep-learning platform for medical imaging [J].
Gibson, Eli ;
Li, Wenqi ;
Sudre, Carole ;
Fidon, Lucas ;
Shakir, Dzhoshkun I. ;
Wang, Guotai ;
Eaton-Rosen, Zach ;
Gray, Robert ;
Doel, Tom ;
Hu, Yipeng ;
Whyntie, Tom ;
Nachev, Parashkev ;
Modat, Marc ;
Barratt, Dean C. ;
Ourselin, Sebastien ;
Cardoso, M. Jorge ;
Vercauteren, Tom .
COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2018, 158 :113-122
[57]   Radiomics: Images Are More than Pictures, They Are Data [J].
Gillies, Robert J. ;
Kinahan, Paul E. ;
Hricak, Hedvig .
RADIOLOGY, 2016, 278 (02) :563-577
[58]   Making Machine Learning Robust Against Adversarial Inputs [J].
Goodfellow, Ian ;
McDaniel, Patrick ;
Papernot, Nicolas .
COMMUNICATIONS OF THE ACM, 2018, 61 (07) :56-66
[59]   Defining the biological basis of radiomic phenotypes in lung cancer [J].
Grossmann, Patrick ;
Stringfield, Olya ;
El-Hachem, Nehme ;
Bui, Marilyn M. ;
Velazquez, Emmanuel Rios ;
Parmar, Chintan ;
Leijenaar, Ralph T. H. ;
Haibe-Kains, Benjamin ;
Lambin, Philippe ;
Gilles, Robert J. ;
Aerts, Hugo J. W. L. .
ELIFE, 2017, 6
[60]   A Survey of Methods for Explaining Black Box Models [J].
Guidotti, Riccardo ;
Monreale, Anna ;
Ruggieri, Salvatore ;
Turin, Franco ;
Giannotti, Fosca ;
Pedreschi, Dino .
ACM COMPUTING SURVEYS, 2019, 51 (05)