Manifolds of support sets of Chebyshev polynomials

被引:0
作者
Bogatyrev, AB [1 ]
机构
[1] Russian Acad Sci, Moscow Inst Phys & Engn, Inst Computat Math, Moscow 117901, Russia
关键词
best approximation; Chebyshev polynomial; homeomorphism; Riemann surface; Abelian differential of the third kind; moduli space; hyperelliptic curve;
D O I
10.1007/BF02675623
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider a parameterization of the set of polynomials T-n(E, x) whose deviation from zero is the least on a system E consisting of several intervals on the real axis. We point out a new way for obtaining the equations which describe the boundary of the maximum set of the least deviation E+ superset of E. We describe the geometry of the variety of all possible sets E+; this manifold is embedded in the moduli space of hyperelliptic curves with real branch points.
引用
收藏
页码:699 / 706
页数:8
相关论文
共 9 条
[1]  
AKHIEZER NI, 1957, DOKL AKAD NAUK SSSR+, V117, P735
[2]  
AKHIEZER NI, 1928, IZV KAZAN FIZ MAT OB, V3, P1
[3]  
BOGATYREV AB, 2000, FUNKTSIONAL ANAL PRI, V34
[4]  
FARKAS H, SPRINGER GTM, V71
[5]  
FOMENKO AT, 1989, COURSE HOMOTOPIC TOP
[6]  
PEHERSTOFER F, 1995, P WORKSH METH COMPL, P137
[7]   ON BERNSTEIN-SZEGO ORTHOGONAL POLYNOMIALS ON SEVERAL INTERVALS .2. ORTHOGONAL POLYNOMIALS WITH PERIODIC RECURRENCE COEFFICIENTS [J].
PEHERSTORFER, F .
JOURNAL OF APPROXIMATION THEORY, 1991, 64 (02) :123-161
[8]  
Sodin M. L., 1992, ALGEBR ANAL, V4, p[1, 201]
[9]  
[No title captured]