Notes on exact multi-soliton solutions of noncommutative integrable hierarchies

被引:14
作者
Hamanaka, Masashi [1 ]
机构
[1] Nagoya Univ, Grad Sch Math, Chikusa Ku, Nagoya, Aichi 4648602, Japan
来源
JOURNAL OF HIGH ENERGY PHYSICS | 2007年 / 02期
关键词
integrable hierarchies; integrable field theories; non-commutative geometry;
D O I
10.1088/1126-6708/2007/02/094
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We study exact multi-soliton solutions of integrable hierarchies on noncommutative space-times which are represented in terms of quasi-determinants of Wronski matrices by Etingof, Gelfand and Retakh. We analyze the asymptotic behavior of the multi-soliton solutions and found that the asymptotic configurations in soliton scattering process can be all the same as commutative ones, that is, the configuration of N-soliton solution has N isolated localized energy densities and the each solitary wave-packet preserves its shape and velocity in the scattering process. The phase shifts are also the same as commutative ones. Furthermore noncommutative toroidal Gelfand-Dickey hierarchy is introduced and the exact multi-soliton solutions are given.
引用
收藏
页数:17
相关论文
共 57 条
  • [1] Babelon O, 2003, INTRO CLASSICAL INTE
  • [2] An extension of the Korteweg-de Vries hierarchy arising from a representation of a toroidal Lie algebra
    Billig, Y
    [J]. JOURNAL OF ALGEBRA, 1999, 217 (01) : 40 - 64
  • [3] BLASZAK M, 1998, MULTIHAMILTONIAN THE
  • [4] BREAKING SOLITONS IN 2 + 1-DIMENSIONAL INTEGRABLE EQUATIONS
    BOGOYAVLENSKII, OI
    [J]. RUSSIAN MATHEMATICAL SURVEYS, 1990, 45 (04) : 1 - 86
  • [5] CHU CS, NONCOMMUTATIVE GEOME
  • [6] DICKEY LA, 2003, ADV SER MATH PHYS, V26, P1
  • [7] Explorations of the extended ncKP hierarchy
    Dimakis, A
    Müller-Hoissen, F
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2004, 37 (45): : 10899 - 10930
  • [8] Extension of noncommutative soliton hierarchies
    Dimakis, A
    Müller-Hoissen, F
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2004, 37 (13): : 4069 - 4084
  • [9] Noncommutative NLS equation
    Dimakis, A
    Müller-Hoissen, F
    [J]. CZECHOSLOVAK JOURNAL OF PHYSICS, 2001, 51 (12) : 1285 - 1290
  • [10] DIMAKIS A, NONCOMMUTATIVE KORTE