Public-key encryption with chaos

被引:46
作者
Kocarev, L
Sterjev, M
Fekete, A
Vattay, G
机构
[1] Univ Calif San Diego, Inst Nonlinear Studies, La Jolla, CA 92093 USA
[2] Eotvos Lorand Univ, Dept Phys Complex Syst, Budapest, Hungary
关键词
D O I
10.1063/1.1821671
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We propose public-key encryption algorithms based on chaotic maps, which are generalization of well-known and commercially used algorithms: Rivest-Shamir-Adleman (RSA), ElGamal, and Rabin. For the case of generalized RSA algorithm we discuss in detail its software implementation and properties. We show that our algorithm is as secure as RSA algorithm. (C) 2004 American Institute of Physics.
引用
收藏
页码:1078 / 1082
页数:5
相关论文
共 22 条
[1]  
[Anonymous], 1962, 2 COURSE NUMBER THEO
[2]   Leading Ruelle resonances of chaotic maps [J].
Blum, G ;
Agam, O .
PHYSICAL REVIEW E, 2000, 62 (02) :1977-1982
[3]   Chaotic diffusion on periodic orbits: The perturbed Arnold cat map [J].
Dana, I ;
Chernov, VE .
PHYSICAL REVIEW E, 2003, 67 (04) :7
[4]   NEW DIRECTIONS IN CRYPTOGRAPHY [J].
DIFFIE, W ;
HELLMAN, ME .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1976, 22 (06) :644-654
[5]   Coupled map networks as communication schemes [J].
García, P. ;
Parravano, A. ;
Cosenza, M.G. ;
Jiménez, J. ;
Marcano, A. .
Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 2002, 65 (04) :1-045201
[6]  
Hasse H., 2002, NUMBER THEORY
[7]   Chaos and cryptography: Block encryption ciphers based on chaotic maps [J].
Jakimoski, G ;
Kocarev, L .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2001, 48 (02) :163-169
[8]  
KENTING JP, 1991, NONLINEARITY, V4, P277
[9]  
KENTING JP, 1991, NONLINEARITY, V4, P309
[10]  
Knuth D. E., 2014, Seminumerical algorithms, V2