Regulation of Clathrin-Mediated Endocytosis

被引:366
|
作者
Mettlen, Marcel [1 ]
Chen, Ping-Hung [1 ]
Srinivasan, Saipraveen [1 ]
Danuser, Gaudenz [1 ,2 ]
Schmid, Sandra L. [1 ]
机构
[1] Univ Texas Southwestern Med Ctr Dallas, Dept Cell Biol, Dallas, TX 75390 USA
[2] Univ Texas Southwestern Med Ctr Dallas, Lyda Hill Dept Bioinformat, Dallas, TX 75235 USA
来源
ANNUAL REVIEW OF BIOCHEMISTRY, VOL 87 | 2018年 / 87卷
关键词
dynamin; endocytic accessory proteins; signaling; AP2; adaptor protein-2; evolution; endocytic checkpoint; COATED VESICLE FORMATION; DEPENDENT BULK ENDOCYTOSIS; DOMAIN-CONTAINING PROTEINS; DYNAMIN-I PHOSPHORYLATION; PLASMA-MEMBRANE; RECEPTOR ENDOCYTOSIS; CRYSTAL-STRUCTURE; MAMMALIAN-CELLS; PIT DYNAMICS; ACCESSORY PROTEINS;
D O I
10.1146/annurev-biochem-062917-012644
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Clathrin-mediated endocytosis (CME) is the major endocytic pathway in mammalian cells. It is responsible for the uptake of transmembrane receptors and transporters, for remodeling plasma membrane composition in response to environmental changes, and for regulating cell surface signaling. CME occurs via the assembly and maturation of clathrin-coated pits that concentrate cargo as they invaginate and pinch off to form clathrin-coated vesicles. In addition to the major coat proteins, clathrin triskelia and adaptor protein complexes, CME requires a myriad of endocytic accessory proteins and phosphatidylinositol lipids. CME is regulated at multiple steps-initiation, cargo selection, maturation, and fission-and is monitored by an endocytic checkpoint that induces disassembly of defective pits. Regulation occurs via posttranslational modifications, allosteric conformational changes, and isoform and splice-variant differences among components of the CME machinery, including the GTPase dynamin. This review summarizes recent findings on the regulation of CME and the evolution of this complex process.
引用
收藏
页码:871 / 896
页数:26
相关论文
共 50 条
  • [1] Phosphoinositide regulation of clathrin-mediated endocytosis
    Haucke, V
    BIOCHEMICAL SOCIETY TRANSACTIONS, 2005, 33 : 1285 - 1289
  • [2] Regulation of clathrin-mediated endocytosis by dynamic ubiquitination and deubiquitination
    Weinberg, J. S.
    Drubin, D. G.
    MOLECULAR BIOLOGY OF THE CELL, 2013, 24
  • [3] Regulation of Clathrin-Mediated Endocytosis by Dynamic Ubiquitination and Deubiquitination
    Weinberg, Jasper S.
    Drubin, David G.
    CURRENT BIOLOGY, 2014, 24 (09) : 951 - 959
  • [4] Kinases in clathrin-mediated endocytosis
    Korolchuk, V
    Banting, G
    BIOCHEMICAL SOCIETY TRANSACTIONS, 2003, 31 : 857 - 860
  • [5] Endocytic Accessory Factors and Regulation of Clathrin-Mediated Endocytosis
    Merrifield, Christien J.
    Kaksonen, Marko
    COLD SPRING HARBOR PERSPECTIVES IN BIOLOGY, 2014, 6 (11): : 1 - 16
  • [6] Regulation of clathrin-mediated endocytosis by p53
    Endo, Yoshie
    Sugiyama, Atsumi
    Li, Shun-Ai
    Ohmori, Kazuji
    Ohata, Hirokazu
    Yoshida, Yusuke
    Shibuya, Masabumi
    Takei, Kohji
    Enari, Masato
    Taya, Yoichi
    GENES TO CELLS, 2008, 13 (04) : 375 - 385
  • [7] Mechanisms of clathrin-mediated endocytosis
    Marko Kaksonen
    Aurélien Roux
    Nature Reviews Molecular Cell Biology, 2018, 19 : 313 - 326
  • [8] Mechanisms of clathrin-mediated endocytosis
    Kaksonen, Marko
    Roux, Aurelien
    NATURE REVIEWS MOLECULAR CELL BIOLOGY, 2018, 19 (05) : 313 - 326
  • [9] Mechanoregulation of clathrin-mediated endocytosis
    Ferguson, Joshua P.
    Huber, Scott D.
    Willy, Nathan M.
    Aygun, Esra
    Goker, Sevde
    Atabey, Tugba
    Kural, Comert
    JOURNAL OF CELL SCIENCE, 2017, 130 (21) : 3631 - 3636
  • [10] Visualizing clathrin-mediated endocytosis
    Emily J. Chenette
    Nature Cell Biology, 2012, 14 (6) : 566 - 566