Impact of the biomass precursor composition in the hard carbon properties and performance for application in a Na-ion battery

被引:38
作者
Rios, Carolina del Mar Saavedra [1 ]
Simonin, Loic [1 ]
Ghimbeu, Camelia Matei [2 ,3 ,4 ]
Vaulot, Cyril [2 ,3 ]
Perez, Denilson da Silva [5 ]
Dupont, Capucine [6 ]
机构
[1] Univ Grenoble Alpes, CEA, LITEN, DEHT, LM 17 Rue Martyrs, F-38054 Grenoble 9, France
[2] Univ Haute Alsace, Inst Sci Mat Mulhouse, CNRS UMR 7361, F-68100 Mulhouse, France
[3] Univ Strasbourg, F-67081 Strasbourg, France
[4] Reseau Stockage Electrochim Energie RS2E, FR CNRS 3459, 33 Rue St Leu, F-80039 Amiens, France
[5] Inst Technol Foret Cellulose Bois Construct Ameub, FCBA, BIOSENSE InTechFibres Div, CS 90251, F-38044 Grenoble, France
[6] IHE Delft Inst Water Educ, Dept Water Supply Sanitat & Environm Engn, Delft, Netherlands
关键词
Biomass; Physico-chemical properties; Hard carbon; Sodium-ion; Battery; SOLID-ELECTROLYTE INTERPHASE; ANODE MATERIALS; ENERGY-STORAGE; SODIUM; PYROLYSIS; LIGNIN; HEMICELLULOSES; MECHANISMS; CONVERSION; LITHIUM;
D O I
10.1016/j.fuproc.2022.107223
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
Biobased hard carbon is gaining attention as anode for Na-ion batteries. However, biomass composition influence on hard carbon properties and performance is rarely addressed. Here a systematic study was led on 25 biomass precursors. Woody and agricultural samples with high lignin contents (> 25 weight-moisture-free, wmf%) exhibited promising yields (> 20 wmf%). Samples with low to moderate ash content (< 5 wmf%) delivered hard carbons with high C purity, the turbostratic structure required, and therefore reversible capacities up to 314 mAh/g. These materials exhibited low N-2 (< 14 m(2)/g) and CO2 (< 66 m(2)/g) specific surface area (SSA), thus low irreversible loss, with initial coulombic efficiencies (ICE) up to 87%. Grass samples presented higher poly-saccharides (> 70 wmf%) and extractives (25 wmf%) contents, leading to lower hard carbon yields, ultra-microporosity formation and the highest CO2 SSA (> 199 m(2)/g). Most grass samples had high ash contents (6-15 wmf%), rich in Si and Ca. SiC whiskers were observed over hard carbon surface, responsible for high N-2 SSA (20-97 m(2)/g), and consequently, lower ICE (< 74%). Localized graphitic domains were identified originating from Ca and Si catalytic effect for graphitization. Limited turbostratic domains and C purity in these samples induced low reversible capacities (< 254 mAh/g).
引用
收藏
页数:17
相关论文
共 68 条
[11]   Chitin and Chitosan-Structurally Related Precursors of Dissimilar Hard Carbons for Na-Ion Battery [J].
Conder, Joanna ;
Vaulot, Cyril ;
Marino, Cyril ;
Villevieille, Claire ;
Ghimbeu, Camelia Matei .
ACS APPLIED ENERGY MATERIALS, 2019, 2 (07) :4841-4852
[12]   Hydrothermally assisted transformation of corn stalk wastes into high-performance hard carbon anode for sodium-ion batteries [J].
Cong, Lin ;
Tian, Guorong ;
Luo, Dongxue ;
Ren, Xuefei ;
Xiang, Xingde .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2020, 871
[13]   Synthesis of hard carbon from argan shells for Na-ion batteries [J].
Dahbi, Mouad ;
Kiso, Manami ;
Kubota, Kei ;
Horiba, Tatsuo ;
Chafik, Tarik ;
Hida, Kazuo ;
Matsuyama, Takashi ;
Komaba, Shinichi .
JOURNAL OF MATERIALS CHEMISTRY A, 2017, 5 (20) :9917-9928
[14]   Carbon Nanosheet Frameworks Derived from Peat Moss as High Performance Sodium Ion Battery Anodes [J].
Ding, Jia ;
Wang, Huanlei ;
Li, Zhi ;
Kohandehghan, Alireza ;
Cui, Kai ;
Xu, Zhanwei ;
Zahiri, Beniamin ;
Tan, Xuehai ;
Lotfabad, Elmira Memarzadeh ;
Olsen, Brian C. ;
Mitlin, David .
ACS NANO, 2013, 7 (12) :11004-11015
[15]  
Dou X., 2019, MATER TODAY, V23
[16]   Hard carbons for sodium-ion batteries: Structure, analysis, sustainability, and electrochemistry [J].
Dou, Xinwei ;
Hasa, Ivana ;
Saurel, Damien ;
Vaalma, Christoph ;
Wu, Liming ;
Buchholz, Daniel ;
Bresser, Dominic ;
Komaba, Shinichi ;
Passerini, Stefano .
MATERIALS TODAY, 2019, 23 :87-104
[17]   Pectin, Hemicellulose, or Lignin? Impact of the Biowaste Source on the Performance of Hard Carbons for SodiumIon Batteries [J].
Dou, Xinwei ;
Hasa, Ivana ;
Hekmatfar, Maral ;
Diemant, Thomas ;
Behm, R. Juergen ;
Buchholz, Daniel ;
Passerini, Stefano .
CHEMSUSCHEM, 2017, 10 (12) :2668-2676
[18]   Side by Side Battery Technologies with Lithium-Ion Based Batteries [J].
Durmus, Yasin Emre ;
Zhang, Huang ;
Baakes, Florian ;
Desmaizieres, Gauthier ;
Hayun, Hagay ;
Yang, Liangtao ;
Kolek, Martin ;
Kuepers, Verena ;
Janek, Juergen ;
Mandler, Daniel ;
Passerini, Stefano ;
Ein-Eli, Yair .
ADVANCED ENERGY MATERIALS, 2020, 10 (24)
[19]   Sodium-ion batteries: New opportunities beyond energy storage by lithium [J].
Eftekhari, Ali ;
Kim, Dong-Won .
JOURNAL OF POWER SOURCES, 2018, 395 :336-348
[20]   Upgrading agricultural biomass for sustainable energy storage: Bioprocessing, electrochemistry, mechanism [J].
Feng, Yiming ;
Tao, Lei ;
Zheng, Zhifeng ;
Huang, Haibo ;
Lin, Feng .
ENERGY STORAGE MATERIALS, 2020, 31 :274-309