Ricci flow on cone surfaces

被引:3
|
作者
Ramos, Daniel [1 ]
机构
[1] Univ Lisbon, Ctr Matemat Aplicac Fundamentais & Invest Operac, P-1749016 Lisbon, Portugal
关键词
Ricci flow; Ricci solitons; conical singularities; uniformization theorem; CONVERGENCE; 2-ORBIFOLDS;
D O I
10.4171/PM/2010
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the evolution under the Ricci flow of surfaces with singularities of cone type. Firstly we provide a complete classification of gradient Ricci solitons on surfaces, which is of independent interest. Secondly, we prove that closed cone surfaces with cone angles less or equal to pi converge, up to rescaling, to closed soliton metrics under the Ricci flow.
引用
收藏
页码:11 / 65
页数:55
相关论文
共 50 条
  • [41] Sharp Decay Estimates for the Logarithmic Fast Diffusion Equation and the Ricci Flow on Surfaces
    Topping P.M.
    Yin H.
    Annals of PDE, 3 (1)
  • [42] Survey on Discrete Surface Ricci Flow
    Zhang, Min
    Zeng, Wei
    Guo, Ren
    Luo, Feng
    Gu, Xianfeng David
    JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY, 2015, 30 (03) : 598 - 613
  • [43] The unified discrete surface Ricci flow
    Zhang, Min
    Guo, Ren
    Zeng, Wei
    Luo, Feng
    Yau, Shing-Tung
    Gu, Xianfeng
    GRAPHICAL MODELS, 2014, 76 : 321 - 339
  • [44] Gradient inequality and convergence to steady-states of the normalized Ricci flow on surfaces
    Kavallaris, Nikos, I
    Suzuki, Takashi
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2022, 221
  • [45] UNIFORM LIPSCHITZ CONTINUITY OF THE ISOPERIMETRIC PROFILE OF COMPACT SURFACES UNDER NORMALIZED RICCI FLOW
    Zheng, Yizhong
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2021, 149 (05) : 2105 - 2119
  • [46] On the Uniqueness of Ricci Flow
    Man-Chun Lee
    The Journal of Geometric Analysis, 2019, 29 : 3098 - 3112
  • [47] Characterizations of the Ricci flow
    Haslhofer, Robert
    Naber, Aaron
    JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2018, 20 (05) : 1269 - 1302
  • [48] Simplicial Ricci Flow
    Warner A. Miller
    Jonathan R. McDonald
    Paul M. Alsing
    David X. Gu
    Shing-Tung Yau
    Communications in Mathematical Physics, 2014, 329 : 579 - 608
  • [49] Tzitzeica equations and Tzitzeica surfaces in separable coordinate systems and the Ricci flow tensor field
    Boskoff, Wladimir G.
    Crasmareanu, Mircea
    Piscoran, Laurian-Ioan
    CARPATHIAN JOURNAL OF MATHEMATICS, 2017, 33 (02) : 141 - 151
  • [50] Ricci flow on surfaces along the standard lightcone in the 3+1-Minkowski spacetime
    Wolff, Markus
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2023, 62 (03)