Ricci flow on cone surfaces

被引:3
|
作者
Ramos, Daniel [1 ]
机构
[1] Univ Lisbon, Ctr Matemat Aplicac Fundamentais & Invest Operac, P-1749016 Lisbon, Portugal
关键词
Ricci flow; Ricci solitons; conical singularities; uniformization theorem; CONVERGENCE; 2-ORBIFOLDS;
D O I
10.4171/PM/2010
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the evolution under the Ricci flow of surfaces with singularities of cone type. Firstly we provide a complete classification of gradient Ricci solitons on surfaces, which is of independent interest. Secondly, we prove that closed cone surfaces with cone angles less or equal to pi converge, up to rescaling, to closed soliton metrics under the Ricci flow.
引用
收藏
页码:11 / 65
页数:55
相关论文
共 50 条
  • [21] The Chern-Ricci flow on complex surfaces
    Tosatti, Valentino
    Weinkove, Ben
    COMPOSITIO MATHEMATICA, 2013, 149 (12) : 2101 - 2138
  • [22] The Kahler-Ricci flow on Hirzebruch surfaces
    Song, Jian
    Weinkove, Ben
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2011, 659 : 141 - 168
  • [23] Stochastic Particle Approximations for the Ricci Flow on Surfaces and the Yamabe Flow
    Philipowski, Robert
    POTENTIAL ANALYSIS, 2011, 35 (04) : 353 - 371
  • [24] Normalized Ricci flow on Riemann surfaces and determinant of Laplacian
    Kokotov, A
    Korotkin, D
    LETTERS IN MATHEMATICAL PHYSICS, 2005, 71 (03) : 241 - 242
  • [25] Ricci flow on asymptotically conical surfaces with nontrivial topology
    Isenberg, James
    Mazzeo, Rafe
    Sesum, Natasa
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2013, 676 : 227 - 248
  • [26] Normalized Ricci Flow on Riemann Surfaces and Determinant of Laplacian
    A. Kokotov
    D. Korotkin
    Letters in Mathematical Physics, 2005, 71 : 241 - 242
  • [27] The Kähler Ricci flow on Fano surfaces (I)
    Xiuxiong Chen
    Bing Wang
    Mathematische Zeitschrift, 2012, 270 : 577 - 587
  • [28] Errors and Convergence in Numerical Simulations of Ricci Flow on 2-Dimensional Surfaces
    Vulcanov, Dumitru N.
    PROCEEDINGS OF THE PHYSICS CONFERENCE TIM-08, 2009, 1131 : 143 - 148
  • [29] Metric contraction of the cone divisor by the conical Kahler-Ricci Flow
    Edwards, Gregory
    MATHEMATISCHE ANNALEN, 2019, 374 (3-4) : 1525 - 1557
  • [30] Discrete Morse flow for Ricci flow and porous medium equation
    Ma, Li
    Witt, Ingo
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2018, 59 : 158 - 164