The tricritical point in the quantum Ising S=1 spin glass with biaxial crystal-field effects

被引:16
作者
Domanski, Z [1 ]
Kopec, TK
机构
[1] Univ Lausanne, Inst Theoret Phys, CH-1015 Lausanne, Switzerland
[2] Czestochowa Tech Univ, Inst Math & Comp Sci, PL-42200 Czestochowa, Poland
[3] Polish Acad Sci, Inst Low Temp & Struct Res, PL-50950 Wroclaw, Poland
关键词
D O I
10.1088/0953-8984/12/26/318
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
We study a quantum generalization of the infinite-range Sherrington-Kirkpatrick spin-glass model with biaxial crystal-field effects described by two uniaxial anisotropy parameters D-x and D-y. For spin dimensionality S = 1 we report an analytical and numerical analysis in the (T, D-x, D-y) parameter space (with T being the temperature). For D = D-x = D-y the model effectively becomes classical and identical with the crystal-field-split spin-glass Ising model (introduced by Ghatak and Sherrington) showing a discontinuous phase transition to the spin-glass phase on a portion of the T-D line.
引用
收藏
页码:5727 / 5734
页数:8
相关论文
共 43 条
[1]   HEISENBERG, XY, AND ISING SPIN-GLASS BEHAVIOR IN HEXAGONAL METALLIC SYSTEMS [J].
ALBRECHT, H ;
WASSERMANN, EF ;
HEDGCOCK, FT ;
MONOD, P .
PHYSICAL REVIEW LETTERS, 1982, 48 (12) :819-822
[2]   RARE-EARTH SPIN-GLASSES WITH UNIAXIAL ANISOTROPY [J].
BABERSCHKE, K ;
PUREUR, P ;
FERT, A ;
WENDLER, R ;
SENOUSSI, S .
PHYSICAL REVIEW B, 1984, 29 (09) :4999-5006
[3]   DYNAMIC CONFINEMENT OF TWISTED SOLITON PAIRS IN BIAXIAL FERROMAGNETS [J].
BRAUN, HB ;
BRODBECK, O .
PHYSICAL REVIEW LETTERS, 1993, 70 (21) :3335-3338
[4]   REPLICA THEORY OF QUANTUM SPIN-GLASSES [J].
BRAY, AJ ;
MOORE, MA .
JOURNAL OF PHYSICS C-SOLID STATE PHYSICS, 1980, 13 (24) :L655-L660
[5]   THE QUANTUM HEISENBERG S=1 SPIN-GLASS MODEL WITH UNIAXIAL ANISOTROPY [J].
BUTTNER, G ;
USADEL, KD .
EUROPHYSICS LETTERS, 1991, 14 (02) :165-168
[6]   THE EXACT PHASE-DIAGRAM OF THE QUANTUM XY SPIN-GLASS MODEL IN A TRANSVERSE FIELD [J].
BUTTNER, G ;
USADEL, KD .
ZEITSCHRIFT FUR PHYSIK B-CONDENSED MATTER, 1991, 83 (01) :131-134
[7]   INSTABILITIES OF AN M-VECTOR SPIN-GLASS IN A FIELD [J].
CRAGG, DM ;
SHERRINGTON, D ;
GABAY, M .
PHYSICAL REVIEW LETTERS, 1982, 49 (02) :158-161
[8]   1ST-ORDER TRANSITION IN A SPIN-GLASS MODEL [J].
DACOSTA, FA ;
YOKOI, CSO ;
SALINAS, SRA .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1994, 27 (10) :3365-3372
[9]   STABILITY OF SHERRINGTON-KIRKPATRICK SOLUTION OF A SPIN GLASS MODEL [J].
DEALMEIDA, JRL ;
THOULESS, DJ .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1978, 11 (05) :983-990
[10]   Competition between axial and cubic anisotropies in Heisenberg spin glasses [J].
Domanski, Z .
PHYSICAL REVIEW B, 1997, 55 (09) :5827-5832